A342601 Numbers k such that 2^k contains 2^10 as a substring.
10, 224, 278, 286, 452, 473, 502, 510, 645, 656, 698, 744, 871, 889, 909, 921, 955, 960, 966, 972, 1010, 1062, 1086, 1113, 1121, 1163, 1182, 1200, 1201, 1208, 1271, 1273, 1282, 1315, 1327, 1328, 1377, 1431, 1444, 1510, 1541, 1550, 1564, 1570, 1583, 1610, 1626, 1630, 1674, 1677, 1693, 1706, 1719, 1720, 1726, 1738
Offset: 1
Examples
The last few digits of 2^224 are 610249216. They contain 1024 as a substring.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> StringTools:-Search("1024",sprintf("%d",2^n)) > 0: select(filter, [$1..2000]); # Robert Israel, Mar 16 2021
-
Mathematica
Select[Range[2000], StringContainsQ[ToString[2^#], ToString[2^10]] &] Select[Range[2000],SequenceCount[IntegerDigits[2^#],{1,0,2,4}]>0&] (* Harvey P. Dale, Dec 15 2024 *)
-
PARI
isok(k) = #strsplit(Str(2^k), Str(2^10)) > 1; \\ Michel Marcus, Mar 16 2021
-
Python
A342601_list, k, m, s = [], 1, 2, str(2**10) while k < 10**6: if s in str(m): A342601_list.append(k) k += 1 m *= 2 # Chai Wah Wu, Mar 17 2021
Comments