A033934 a(n) = (10^n + 1)^2.
4, 121, 10201, 1002001, 100020001, 10000200001, 1000002000001, 100000020000001, 10000000200000001, 1000000002000000001, 100000000020000000001, 10000000000200000000001, 1000000000002000000000001, 100000000000020000000000001, 10000000000000200000000000001
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Mathematica
(10^Range[0,20]+1)^2 (* or *) LinearRecurrence[{111,-1110,1000},{4,121,10201},20] (* Harvey P. Dale, Feb 16 2016 *)
-
PARI
my(x='x+O('x^15)); Vec((1210*x^2-323*x+4)/(-1000*x^3+1110*x^2-111*x+1)) \\ Elmo R. Oliveira, Jul 04 2025
Formula
From Elmo R. Oliveira, Jul 04 2025: (Start)
G.f.: (4 - 323*x + 1210*x^2)/((1-x)*(1-10*x)*(1-100*x)).
E.g.f.: exp(x)*(1 + 2*exp(9*x) + exp(99*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3). (End)
Extensions
Better description from Henry Bottomley, Dec 07 2001
More terms from Harvey P. Dale, Feb 16 2016
Comments