A033955 a(n) = sum of the remainders when the n-th prime is divided by primes up to the (n-1)-th prime.
0, 1, 3, 4, 8, 13, 18, 27, 29, 46, 56, 70, 74, 88, 98, 134, 147, 171, 200, 217, 252, 274, 309, 323, 348, 418, 448, 471, 522, 571, 629, 685, 739, 777, 793, 853, 954, 997, 1002, 1120, 1148, 1220, 1338, 1419, 1466, 1540, 1615, 1573, 1633, 1707, 1825, 1892, 1986
Offset: 1
Examples
a(5) = 8. The remainders when the fifth prime 11 is divided by 2, 3, 5, 7 are 1, 2, 1, 4, respectively and their sum = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= [seq(ithprime(i),i=1..200)]: f:= proc(n) local j; add(P[n] mod P[j],j=1..n-1) end proc: map(f, [$1..200]); # Robert Israel, Dec 29 2020
-
Mathematica
a[n_] := Sum[Mod[Prime[n], Prime[i]], {i, 1, n-1}] Table[Total[Mod[Prime[n],Prime[Range[n-1]]]],{n,60}] (* Harvey P. Dale, Mar 07 2018 *)
-
PARI
{for(n=1, 200, print1(sum(k=1, n, prime(n)%prime(k)), ", "))}
-
Python
from sympy import prime; {print(sum(prime(n)%prime(k) for k in range(1,n)), end =', ') for n in range(1,54)} # Ya-Ping Lu, May 05 2024
Formula
a(n) = Sum_{k=1..n-1} ( prime(n) mod prime(k) ).
Extensions
Edited by Dean Hickerson, Mar 02 2002
Comments