A033993 Numbers that are divisible by exactly four different primes.
210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690, 714, 770, 780, 798, 840, 858, 870, 910, 924, 930, 966, 990, 1020, 1050, 1092, 1110, 1122, 1140, 1155, 1170, 1190, 1218, 1230, 1254, 1260, 1290, 1302, 1320, 1326, 1330, 1365, 1380, 1386, 1410, 1428
Offset: 1
Examples
The 4th primorial is the first term of this sequence: A002110(4) = 210.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
Programs
-
Mathematica
Select[Range[1500], Length[FactorInteger[#]] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
-
PARI
is(n)=omega(n)==4 \\ Charles R Greathouse IV, Sep 17 2015
-
PARI
A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) list(lim,pr=4)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
Formula
a(n) has exactly 4 distinct prime factors. omega(a(n)) = A001221(a(n)) = 4. - Jonathan Vos Post, Sep 21 2005
Comments