cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033993 Numbers that are divisible by exactly four different primes.

Original entry on oeis.org

210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690, 714, 770, 780, 798, 840, 858, 870, 910, 924, 930, 966, 990, 1020, 1050, 1092, 1110, 1122, 1140, 1155, 1170, 1190, 1218, 1230, 1254, 1260, 1290, 1302, 1320, 1326, 1330, 1365, 1380, 1386, 1410, 1428
Offset: 1

Views

Author

Keywords

Comments

For a(n) < 30030 = 2 * 3 * 5 * 7 * 11 * 13 this is identical to "numbers with a semiprime number of distinct prime factors." - Jonathan Vos Post, Sep 21 2005

Examples

			The 4th primorial is the first term of this sequence: A002110(4) = 210.
		

Crossrefs

Row 4 of A125666.

Programs

  • Mathematica
    Select[Range[1500], Length[FactorInteger[#]] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
  • PARI
    is(n)=omega(n)==4 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=4)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023

Formula

a(n) has exactly 4 distinct prime factors. omega(a(n)) = A001221(a(n)) = 4. - Jonathan Vos Post, Sep 21 2005