cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007890 Summarize the previous term! (in decreasing order).

Original entry on oeis.org

1, 11, 21, 1211, 1231, 131221, 132231, 232221, 134211, 14131231, 14231241, 24132231, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221
Offset: 1

Views

Author

Keywords

Examples

			For example, the term after 131221 is obtained by saying "one 3, two 2's, three 1's", which gives 13-22-31, i.e. 132231.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, FromDigits@ Flatten@ Map[Reverse, Tally@ ReverseSort@ IntegerDigits@ #[[-1]] ] ] &, {1}, 24] (* Michael De Vlieger, Jul 15 2020 *)

Formula

From Seiichi Manyama, Aug 18 2020: (Start)
a(1) = 1 and a(n) = A244112(a(n-1)) for n > 1.
a(n) = 14233221 for n >= 13. (End)

A083671 Array read by rows in which each row describes in words the composition of the previous row.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 4, 2, 1, 3, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 2, 2, 3, 1, 4, 3, 1, 2, 2, 1, 3, 2, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, based on a query from Chasity Engle, Jan 20 2004

Keywords

Comments

Becomes periodic at row 13.

Examples

			Array begins:
1
1 1
2 1
1 1 1 2
3 1 1 2
2 1 1 2 1 3
3 1 2 2 1 3
2 1 2 2 2 3
1 1 4 2 1 3
3 1 1 2 1 3 1 4
4 1 1 2 2 3 1 4
3 1 2 2 1 3 2 4
2 1 3 2 2 3 1 4
Explanation: look at 3 1 1 2. What do you see? Two 1's, one 2 and one 3, so the next row is 2 1 1 2 1 3.
		

Crossrefs

Similar to A005151. Cf. A005150, A034002, A034003.

Programs

  • Mathematica
    NestList[Function[test, Flatten[{Count[test, # ], # } & /@ Union[test]]], {1}, 13]
    RunLengthEncode[x_List ] := (Through[ { Length, First}[ #1 ] ] &) /@ Split[ Sort[ x ]]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[n_] := LookAndSay[ n, 1 ][[ n ]]; Flatten[ Table[ F[n], {n, 18}]] (* Robert G. Wilson v, Jan 22 2004 *)

Formula

G.f.: x*(x^67 -x^65 -x^63 +x^61 -x^59 +x^57 -x^55 +x^53 -x^49 -x^45 -x^44 -x^42 +3*x^41 -x^40 +2*x^38 -x^37 -x^36 +x^35 -x^34 -2*x^33 +2*x^32 -x^30 -x^28 +x^27 +2*x^26 -x^25 -x^24 -x^22 +x^20 -2*x^19 -2*x^18 +2*x^17 -x^13 -x^12 +x^11 -2*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -2*x^3 -x^2 -x -1) / (x^8-1). - Alois P. Heinz, Jul 25 2013

Extensions

More terms from Wouter Meeussen and Robert G. Wilson v, Jan 22 2004
Showing 1-2 of 2 results.