cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034256 Expansion of 2 - (1 - 16*x)^(1/4), related to quartic factorial numbers A034176.

Original entry on oeis.org

1, 4, 24, 224, 2464, 29568, 374528, 4922368, 66451968, 915560448, 12817846272, 181780365312, 2605518569472, 37679807004672, 549048616353792, 8052713039855616, 118777517337870336, 1760702021714313216, 26214896767746441216, 391843720107367858176, 5877655801610517872640
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 4^(2*n-1)*Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 19 2025 *)

Formula

Equals 4 * A025749(n), n > 0.
a(n) = 4^n*3*A034176(n-1)/n!, n >= 2, where 3*A034176(n-1) = (4*n-5)(!^4) = Product_{j=2..n} (4*j - 5).
O.g.f.: A(x) = 2 - (1 - 16*x)^(1/4).
From Peter Bala, Nov 19 2015: (Start)
For n >= 1, a(n) = (1/(sqrt(2)*Pi)) * Integral_{x = 0..16} x^(n-1)*((16 - x)/x)^(1/4) dx.
It appears that sqrt(A(x)) = 1 + 2*x + 10*x^2 + 92*x^3 + 998*x^4 + 11868*x^5 + 149316*x^6 + ... has integer coefficients. (End)
a(n) ~ 4^(2*n-1) * n^(-5/4) / Gamma(3/4). - Amiram Eldar, Aug 19 2025

Extensions

More terms from Amiram Eldar, Aug 19 2025