cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A034176 One third of quartic factorial numbers.

Original entry on oeis.org

1, 7, 77, 1155, 21945, 504735, 13627845, 422463195, 14786211825, 576662261175, 24796477230525, 1165434429834675, 59437155921568425, 3269043575686263375, 192873570965489539125, 12151034970825840964875, 814119343045331344646625, 57802473356218525469910375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(4*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (4*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034176:=n->`if`(n=1, 1, (4*n-1)*A034176(n-1)); seq(A034176(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    Table[4^n*Pochhammer[3/4, n]/3, {n, 20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(4*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [4^n*rising_factorial(3/4, n)/3 for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

3*a(n) = (4*n-1)(!^4) := Product_{j=1..n} 4*j-1 = (4*n-1)!!/A007696(n) = (4*n)!/(4^n*(2*n)!*A007696(n)), A007696(n)=(4*n-3)(!^4), n >= 1;
E.g.f.: (-1 + (1-4*x)^(-3/4))/3.
a(n) ~ 4/3 * 2^(1/2) * Pi^(1/2) * Gamma(3/4)^(-1) * n^(5/4) * 2^(2*n) * e^(-n) * n^n * {1 + 71/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/Q(0) where Q(k) = 1 - x + 2*(2*k-1)*x - 4*x*(k+1) / Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
D-finite with recurrence: a(n) + (-4*n+1) * a(n-1) = 0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 3*exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4)) / sqrt(2). - Amiram Eldar, Dec 18 2022
a(n) = 4^(n-1) * Gamma(n + 3/4) / Gamma(7/4). - Peter McNair, May 06 2024

A004984 a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).

Original entry on oeis.org

1, -2, -6, -28, -154, -924, -5852, -38456, -259578, -1788204, -12517428, -88759944, -636112932, -4599585816, -33511268088, -245749299312, -1812401082426, -13433090375628, -100001895018564, -747382583822952, -5605369378672140, -42173731515723720
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->(2^n/Factorial(n))*Product([0..n-1],k->4*k-1)); # Muniru A Asiru, Apr 28 2018
    
  • Magma
    [1] cat [2^n*(&*[4*k-1: k in [0..n-1]])/Factorial(n): n in [1..30]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    seq(-(1/4)*8^n*GAMMA(n-1/4)/(GAMMA(3/4)*n!), n=0..30); # Robert Israel, Sep 29 2014
  • Mathematica
    Table[8^n*Pochhammer[-1/4, n]/n!, {n,0,30}] (* G. C. Greubel, Aug 22 2019 *)
    CoefficientList[Series[Surd[1-8x,4],{x,0,30}],x] (* Harvey P. Dale, Dec 08 2019 *)
  • Maxima
    a(n):=-1/n*(if n=1 then (2)^n else sum(sum(binomial(k,j)* binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j),j,0,k)*binomial(k+n-1,n-1)*(2)^n,k,1,n-1)); /* Vladimir Kruchinin, Sep 14 2010 */
    
  • Maxima
    a(n):=binomial(1/4,n)*(-8)^n; /* Tani Akinari, Sep 28 2014 */
    
  • PARI
    for(n=0,28,print1(2^n/n!*prod(k=0,n-1,(4*k-1)),","))
    
  • Sage
    [8^n*rising_factorial(-1/4, n)/factorial(n) for n in (0..30)] # G. C. Greubel, Aug 22 2019

Formula

G.f.: (1 - 8*x)^(1/4).
a(n) ~ -1/4*Gamma(3/4)^-1*n^(-5/4)*2^(3*n)*{1 + 5/32*n^-1 + ...}
a(n) = -1/n*Sum_{k=1..n-1} 2^n*binomial(k+n-1, n-1) * ( Sum_{j=0..k} binomial(k,j)*binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j) ), n>1. - Vladimir Kruchinin, Sep 14 2010
a(n) = 8^n*Pochhammer(-1/4, n)/n! = -(1/4)*8^n*Gamma(n-1/4)/(Gamma(3/4)*n!). - Robert Israel, Sep 29 2014
D-finite with recurrence: n*a(n) +2*(-4*n+5)*a(n-1)=0. - R. J. Mathar, Jan 16 2020

Extensions

More terms from Jason Earls, Dec 04 2001
Showing 1-2 of 2 results.