A051619
a(n) = (4*n+7)(!^4)/7(!^4), related to A034176(n+1) ((4*n+3)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 11, 165, 3135, 72105, 1946835, 60351885, 2112315975, 82380323025, 3542353890075, 166490632833525, 8491022274509775, 467006225098037625, 27553367280784219875, 1735862138689405852125, 116302763292190192092375
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(11/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(11/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(11/4))) \\ G. C. Greubel, Aug 15 2018
A034256
Expansion of 2 - (1 - 16*x)^(1/4), related to quartic factorial numbers A034176.
Original entry on oeis.org
1, 4, 24, 224, 2464, 29568, 374528, 4922368, 66451968, 915560448, 12817846272, 181780365312, 2605518569472, 37679807004672, 549048616353792, 8052713039855616, 118777517337870336, 1760702021714313216, 26214896767746441216, 391843720107367858176, 5877655801610517872640
Offset: 0
-
a[n_] := 4^(2*n-1)*Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 19 2025 *)
A008545
Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).
Original entry on oeis.org
1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
a(n)=
A000369(n+1, 1) (first column of triangle).
-
List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
-
a008545 n = a008545_list !! n
a008545_list = scanl (*) 1 a004767_list
-- Reinhard Zumkeller, Oct 25 2013
-
[1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
-
f := n->product( (4*k-1),k=0..n);
A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
-
FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
-
a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
-
{a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
-
[product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
A034177
a(n) is the n-th quartic factorial number divided by 4.
Original entry on oeis.org
1, 8, 96, 1536, 30720, 737280, 20643840, 660602880, 23781703680, 951268147200, 41855798476800, 2009078326886400, 104472072998092800, 5850436087893196800, 351026165273591808000, 22465674577509875712000, 1527665871270671548416000, 109991942731488351485952000
Offset: 1
G.f. = x + 8*x^2 + 96*x^3 + 1536*x^4 + 30720*x^5 + 737820*x^6 + ...
-
List([1..20], n-> 4^(n-1)*Factorial(n) ); # G. C. Greubel, Aug 15 2019
-
[4^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
-
[seq(n!*4^(n-1), n=1..16)]; # Zerinvary Lajos, Sep 23 2006
-
Array[4^(# - 1) #! &, 16] (* Michael De Vlieger, May 30 2019 *)
-
vector(20, n, 4^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
-
[4^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
A051617
a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 9, 117, 1989, 41769, 1044225, 30282525, 999323325, 36974963025, 1515973484025, 68218806781125, 3342721532275125, 177164241210581625, 10098361749003152625, 616000066689192310125, 40040004334797500158125
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ G. C. Greubel, Aug 15 2018
A025749
4th-order Patalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 6, 56, 616, 7392, 93632, 1230592, 16612992, 228890112, 3204461568, 45445091328, 651379642368, 9419951751168, 137262154088448, 2013178259963904, 29694379334467584, 440175505428578304, 6553724191936610304, 97960930026841964544, 1469413950402629468160
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
-
a[n_] := (4^(n-1)*Sum[ Binomial[n+k-1, n-1]*Sum[ Binomial[j, n-3*k+2*j-1] * 4^(j-k) * Binomial[k, j] * 3^(-n+3*k-j+1) * 2^(n-3*k+j-1) * (-1)^(n-3*k+2*j-1), {j, 0, k}], {k, 1, n-1}])/n; a[0] = a[1] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Mar 05 2013, after Vladimir Kruchinin *)
a[n_] := 16^(n-1) * Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 20 2025 *)
-
a(n):=(4^(n-1)*sum(binomial(n+k-1,n-1)*sum(binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1),j,0,k),k,1,n-1))/n; /* Vladimir Kruchinin, Apr 01 2011 */
A051618
a(n) = (4*n+6)(!^4)/6(!^4).
Original entry on oeis.org
1, 10, 140, 2520, 55440, 1441440, 43243200, 1470268800, 55870214400, 2346549004800, 107941254220800, 5397062711040000, 291441386396160000, 16903600410977280000, 1048023225480591360000, 69169532881719029760000, 4841867301720332083200000, 358298180327304574156800000
Offset: 0
-
[Factorial(2*n+4)/(12*Factorial(n+2)): n in [0..100]]; // Vincenzo Librandi, Jul 04 2015
-
seq(mul((n+2+k), k=1..n+2)/12, n=0..17); # Zerinvary Lajos, Feb 15 2008
A051618 := n -> 2^n*(n+1)!*JacobiP(n+1, 1/2, -(n+1), 3)/3:
seq(simplify(A051618(n)), n = 0..19); # Peter Luschny, Jan 22 2025
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 9, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
f[n_] := (2n + 4)!/(12(n + 2)!); Array[f, 16, 0] (* Or *)
FoldList[ #2*#1 &, 1, Range[10, 66, 4]] (* Robert G. Wilson v *)
With[{nn=20},CoefficientList[Series[1/(1-4x)^(5/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 24 2015 *)
Table[(Product[(4*k + 6), {k, 0, n}])/6, {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *)
-
A051618(n):=(2*n+4)!/(12*(n+2)!)$
makelist(A051618(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
for(n=0,25, print1((2*n+3)!/(6*(n+1)!), ", ")) \\ G. C. Greubel, Jan 27 2017
A051622
a(n) = (4*n+10)(!^4)/10(!^4), related to A000407 ((4*n+2)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 14, 252, 5544, 144144, 4324320, 147026880, 5587021440, 234654900480, 10794125422080, 539706271104000, 29144138639616000, 1690360041097728000, 104802322548059136000, 6916953288171902976000, 484186730172033208320000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(14/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
seq(mul((n+3+k), k=1..n+3)/120, n=0..18); # Zerinvary Lajos, Feb 15 2008
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(7/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(14/4))) \\ G. C. Greubel, Aug 15 2018
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A034912
One sixth of octo-factorial numbers.
Original entry on oeis.org
1, 14, 308, 9240, 351120, 16151520, 872182080, 54075288960, 3785270227200, 295251077721600, 25391592684057600, 2386809712301414400, 243454590654744268800, 26780004972021869568000, 3160040586698580609024000, 398165113924021156737024000, 53354125265818835002761216000
Offset: 1
-
[n le 1 select 1 else (8*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 20 2022
-
f:= proc(n) option remember; procname(n-1)*(8*n-2) end proc:
f(1):= 1:
map(f,[$1..20]); # Robert Israel, Mar 20 2018
-
Table[8^n*Pochhammer[3/4,n]/6, {n,40}] (* G. C. Greubel, Oct 20 2022 *)
-
[8^n*rising_factorial(3/4,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 20 2022
Showing 1-10 of 18 results.
Comments