A051618
a(n) = (4*n+6)(!^4)/6(!^4).
Original entry on oeis.org
1, 10, 140, 2520, 55440, 1441440, 43243200, 1470268800, 55870214400, 2346549004800, 107941254220800, 5397062711040000, 291441386396160000, 16903600410977280000, 1048023225480591360000, 69169532881719029760000, 4841867301720332083200000, 358298180327304574156800000
Offset: 0
-
[Factorial(2*n+4)/(12*Factorial(n+2)): n in [0..100]]; // Vincenzo Librandi, Jul 04 2015
-
seq(mul((n+2+k), k=1..n+2)/12, n=0..17); # Zerinvary Lajos, Feb 15 2008
A051618 := n -> 2^n*(n+1)!*JacobiP(n+1, 1/2, -(n+1), 3)/3:
seq(simplify(A051618(n)), n = 0..19); # Peter Luschny, Jan 22 2025
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 9, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
f[n_] := (2n + 4)!/(12(n + 2)!); Array[f, 16, 0] (* Or *)
FoldList[ #2*#1 &, 1, Range[10, 66, 4]] (* Robert G. Wilson v *)
With[{nn=20},CoefficientList[Series[1/(1-4x)^(5/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 24 2015 *)
Table[(Product[(4*k + 6), {k, 0, n}])/6, {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *)
-
A051618(n):=(2*n+4)!/(12*(n+2)!)$
makelist(A051618(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
for(n=0,25, print1((2*n+3)!/(6*(n+1)!), ", ")) \\ G. C. Greubel, Jan 27 2017
A051622
a(n) = (4*n+10)(!^4)/10(!^4), related to A000407 ((4*n+2)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 14, 252, 5544, 144144, 4324320, 147026880, 5587021440, 234654900480, 10794125422080, 539706271104000, 29144138639616000, 1690360041097728000, 104802322548059136000, 6916953288171902976000, 484186730172033208320000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(14/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
seq(mul((n+3+k), k=1..n+3)/120, n=0..18); # Zerinvary Lajos, Feb 15 2008
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(7/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(14/4))) \\ G. C. Greubel, Aug 15 2018
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A051620
a(n) = (4*n+8)(!^4)/8(!^4), related to A034177(n+1) ((4*n+4)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 12, 192, 3840, 92160, 2580480, 82575360, 2972712960, 118908518400, 5231974809600, 251134790860800, 13059009124761600, 731304510986649600, 43878270659198976000, 2808209322188734464000, 190958233908833943552000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(12/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
G(x):=(1-4*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn=20},CoefficientList[Series[1/(1-4*x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2017 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(12/4))) \\ G. C. Greubel, Aug 15 2018
A051619
a(n) = (4*n+7)(!^4)/7(!^4), related to A034176(n+1) ((4*n+3)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 11, 165, 3135, 72105, 1946835, 60351885, 2112315975, 82380323025, 3542353890075, 166490632833525, 8491022274509775, 467006225098037625, 27553367280784219875, 1735862138689405852125, 116302763292190192092375
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(11/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(11/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(11/4))) \\ G. C. Greubel, Aug 15 2018
A051621
a(n) = (4*n+9)(!^4)/9(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 13, 221, 4641, 116025, 3364725, 111035925, 4108329225, 168441498225, 7579867420125, 371413503586125, 19684915690064625, 1122040194333683625, 68444451854354701125, 4448889370533055573125, 306973366566780834545625
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(13/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(13/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(13/4))) \\ G. C. Greubel, Aug 15 2018
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
Showing 1-8 of 8 results.
Comments