cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A051620 a(n) = (4*n+8)(!^4)/8(!^4), related to A034177(n+1) ((4*n+4)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 12, 192, 3840, 92160, 2580480, 82575360, 2972712960, 118908518400, 5231974809600, 251134790860800, 13059009124761600, 731304510986649600, 43878270659198976000, 2808209322188734464000, 190958233908833943552000
Offset: 0

Views

Author

Keywords

Comments

Row m=8 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(12/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    G(x):=(1-4*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn=20},CoefficientList[Series[1/(1-4*x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2017 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(12/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+8)(!^4))/8(!^4) = A034177(n+2)/8.
E.g.f.: 1/(1-4*x)^3.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + 1/(2*k+6)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A034176 One third of quartic factorial numbers.

Original entry on oeis.org

1, 7, 77, 1155, 21945, 504735, 13627845, 422463195, 14786211825, 576662261175, 24796477230525, 1165434429834675, 59437155921568425, 3269043575686263375, 192873570965489539125, 12151034970825840964875, 814119343045331344646625, 57802473356218525469910375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(4*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (4*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034176:=n->`if`(n=1, 1, (4*n-1)*A034176(n-1)); seq(A034176(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    Table[4^n*Pochhammer[3/4, n]/3, {n, 20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(4*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [4^n*rising_factorial(3/4, n)/3 for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

3*a(n) = (4*n-1)(!^4) := Product_{j=1..n} 4*j-1 = (4*n-1)!!/A007696(n) = (4*n)!/(4^n*(2*n)!*A007696(n)), A007696(n)=(4*n-3)(!^4), n >= 1;
E.g.f.: (-1 + (1-4*x)^(-3/4))/3.
a(n) ~ 4/3 * 2^(1/2) * Pi^(1/2) * Gamma(3/4)^(-1) * n^(5/4) * 2^(2*n) * e^(-n) * n^n * {1 + 71/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/Q(0) where Q(k) = 1 - x + 2*(2*k-1)*x - 4*x*(k+1) / Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
D-finite with recurrence: a(n) + (-4*n+1) * a(n-1) = 0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 3*exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4)) / sqrt(2). - Amiram Eldar, Dec 18 2022
a(n) = 4^(n-1) * Gamma(n + 3/4) / Gamma(7/4). - Peter McNair, May 06 2024

A167560 The ED2 array read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED2 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED2 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
The ED2 array is related to the EG1 matrix, see A162005, because sum(EG1(2*m-1,n) * z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n), y=0..infinity).
For the ED1, ED3 and ED4 arrays see A167546, A167572 and A167584.

Examples

			The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
		

Crossrefs

A000012, A005843 (n>=1), 2*A104249 (n>=1), A167561, A167562 and A167563 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
Cf. A162005 (EG1 triangle).
Cf. A167546 (ED1 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
    # alternative
    A167560 := proc(n,m)
        option remember ;
        if m > n then
            n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
        else
            4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
        end if;
    end proc:
    seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = ((m-1)!/((m-n-1)!))*int(sinh(y*(2*n))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n-1,m-k),k=0..n-1) = n!
which in its turn leads to, see A167569,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! if m<=n.

A051617 a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 9, 117, 1989, 41769, 1044225, 30282525, 999323325, 36974963025, 1515973484025, 68218806781125, 3342721532275125, 177164241210581625, 10098361749003152625, 616000066689192310125, 40040004334797500158125
Offset: 0

Views

Author

Keywords

Comments

Row m=5 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1) (rows m=0..4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+5)(!^4))/5(!^4).
E.g.f.: 1/(1-4*x)^(9/4).

A051618 a(n) = (4*n+6)(!^4)/6(!^4).

Original entry on oeis.org

1, 10, 140, 2520, 55440, 1441440, 43243200, 1470268800, 55870214400, 2346549004800, 107941254220800, 5397062711040000, 291441386396160000, 16903600410977280000, 1048023225480591360000, 69169532881719029760000, 4841867301720332083200000, 358298180327304574156800000
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000407 ((4*n+2)(!^4) quartic, or 4-factorials).
Row m=6 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.
a(n) = A001813 a(n+2)/12. - Zerinvary Lajos, Feb 15 2008
For n>4, a(n) mod n^2 = n*(n-2) if n is prime, otherwise 0. - Gary Detlefs, Apr 16 2012

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617 through A051622 (rows m=0..10).

Programs

  • Magma
    [Factorial(2*n+4)/(12*Factorial(n+2)): n in [0..100]]; // Vincenzo Librandi, Jul 04 2015
    
  • Maple
    seq(mul((n+2+k), k=1..n+2)/12, n=0..17); # Zerinvary Lajos, Feb 15 2008
    A051618 := n -> 2^n*(n+1)!*JacobiP(n+1, 1/2, -(n+1), 3)/3:
    seq(simplify(A051618(n)), n = 0..19);  # Peter Luschny, Jan 22 2025
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 9, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    f[n_] := (2n + 4)!/(12(n + 2)!); Array[f, 16, 0] (* Or *)
    FoldList[ #2*#1 &, 1, Range[10, 66, 4]] (* Robert G. Wilson v *)
    With[{nn=20},CoefficientList[Series[1/(1-4x)^(5/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 24 2015 *)
    Table[(Product[(4*k + 6), {k, 0, n}])/6, {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *)
  • Maxima
    A051618(n):=(2*n+4)!/(12*(n+2)!)$
    makelist(A051618(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    for(n=0,25, print1((2*n+3)!/(6*(n+1)!), ", ")) \\ G. C. Greubel, Jan 27 2017

Formula

a(n) = ((4*n+6)(!^4))/6(!^4).
E.g.f.: 1/(1-4*x)^(5/2).
a(n) = (2n+4)!/(12(n+2)!). - Gary Detlefs, Mar 06 2011
a(n) = (2*n+3)!/(6*(n+1)!). - Gary Detlefs, Apr 16 2012
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + 1/(2*k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = (4^(1+n)*Gamma(5/2+n))/(3*sqrt(Pi)). - Gerry Martens, Jul 02 2015
a(n) ~ 2^(2*n+5/2) * n^(n+2) / (3*exp(n)). - Vaclav Kotesovec, Jul 04 2015
a(n) = 2^n*(n+1)!*JacobiP(n+1, 1/2, -(n+1), 3)/3. - Peter Luschny, Jan 22 2025

A051622 a(n) = (4*n+10)(!^4)/10(!^4), related to A000407 ((4*n+2)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 14, 252, 5544, 144144, 4324320, 147026880, 5587021440, 234654900480, 10794125422080, 539706271104000, 29144138639616000, 1690360041097728000, 104802322548059136000, 6916953288171902976000, 484186730172033208320000
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.
From Zerinvary Lajos, Feb 15 2008: (Start)
a(n) = A001813(n+3)/120.
a(n) = A051618(n+1)/10. (End)

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051621 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(14/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    seq(mul((n+3+k), k=1..n+3)/120, n=0..18); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(7/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(14/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+10)(!^4))/10(!^4) = A000407(n+2)/(6*10).
E.g.f.: 1/(1-4*x)^(7/2).
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + 1/(2*k+7)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013

A303487 a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).

Original entry on oeis.org

1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
    Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[4^n Pochhammer[n/4, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (4*k + n).
a(n) = 4^n*Gamma(5*n/4)/Gamma(n/4).
a(n) ~ 5^(5*n/4-1/2)*n^n/exp(n).

A167569 The lower left triangle of the ED2 array A167560.

Original entry on oeis.org

1, 2, 4, 6, 16, 32, 24, 80, 192, 384, 120, 480, 1344, 3072, 6144, 720, 3360, 10752, 27648, 61440, 122880, 5040, 26880, 96768, 276480, 675840, 1474560, 2949120, 40320, 241920, 967680, 3041280, 8110080, 19169280, 41287680, 82575360
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

We discovered that the numbers that appear in the lower left triangle of the ED2 array A167560 (m <= n) behave in a regular way, see the formula below. This rather simple regularity doesn't show up in the upper right triangle of the ED2 array (m > n).

Examples

			The first few triangle rows are:
[1]
[2, 4]
[6, 16, 32]
[24, 80, 192, 384]
[120, 480, 1344, 3072, 6144]
[720, 3360, 10752, 27648, 61440, 122880]
		

Crossrefs

A167560 is the ED2 array.
A047053, 2*A034177 and A167570 are the first three right hand triangle columns.
A000142, 4*A001715, 32*A001725, 384* A049388 and 6144* A049398 are the first five left hand triangle columns.
A167571 equals the row sums.

Programs

  • Maple
    a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
  • Mathematica
    Flatten[Table[4^(m - 1)*(m - 1)!*(n + m - 1)!/(2*m - 1)!, {n, 1, 50}, {m, n}]] (* G. C. Greubel, Jun 16 2016 *)

Formula

a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)!.

A048786 Triangle of coefficients of certain exponential convolution polynomials.

Original entry on oeis.org

1, 8, 1, 96, 24, 1, 1536, 576, 48, 1, 30720, 15360, 1920, 80, 1, 737280, 460800, 76800, 4800, 120, 1, 20643840, 15482880, 3225600, 268800, 10080, 168, 1, 660602880, 578027520, 144506880, 15052800, 752640, 18816, 224, 1
Offset: 1

Views

Author

Keywords

Comments

i) p(n,x) := sum(a(n,m)*x^m,m=1..n), p(0,x) := 1, are monic polynomials satisfying p(n,x+y)= sum(binomial(n,k)*p(k,x)*p(n-k,y),k=0..n), (exponential convolution polynomials). ii) In the terminology of the umbral calculus (see reference) p(n,x) are called associated to f(t)= t/(1+4*t). iii) a(n,1)= A034177(n).
Also the Bell transform of A034177. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Also the fourth power of the unsigned Lah triangular matrix A105278. - Shuhei Tsujie, May 18 2019
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -3 <= d <= 4). - Shuhei Tsujie, May 18 2019

Examples

			Triangle begins:
      1;
      8,     1;
     96,    24,    1;
   1536,   576,   48,  1;
  30720, 15360, 1920, 80, 1;
  ...
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 4^n*(n+1)!, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    rows = 8;
    t = Table[4^n*(n+1)!, {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

a(n, m) = n!*4^(n-m)*binomial(n-1, m-1)/m!, n >= m >= 1; a(n, m) := 0, m>n; a(n, m) = (n!/m!)*A038231(n-1, m-1) = 4^(n-m)*A008297(n, m) (Lah-triangle).

Extensions

T(8,4) corrected by Jean-François Alcover, Jun 22 2018
Showing 1-10 of 17 results. Next