cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008297 Triangle of Lah numbers.

Original entry on oeis.org

-1, 2, 1, -6, -6, -1, 24, 36, 12, 1, -120, -240, -120, -20, -1, 720, 1800, 1200, 300, 30, 1, -5040, -15120, -12600, -4200, -630, -42, -1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, -362880, -1451520, -1693440, -846720, -211680, -28224, -2016, -72, -1, 3628800, 16329600, 21772800, 12700800
Offset: 1

Views

Author

Keywords

Comments

|a(n,k)| = number of partitions of {1..n} into k lists, where a list means an ordered subset.
Let N be a Poisson random variable with parameter (mean) lambda, and Y_1,Y_2,... independent exponential(theta) variables, independent of N, so that their density is given by (1/theta)*exp(-x/theta), x > 0. Set S=Sum_{i=1..N} Y_i. Then E(S^n), i.e., the n-th moment of S, is given by (theta^n) * L_n(lambda), n >= 0, where L_n(y) is the Lah polynomial Sum_{k=0..n} |a(n,k)| * y^k. - Shai Covo (green355(AT)netvision.net.il), Feb 09 2010
For y = lambda > 0, formula 2) for the Lah polynomial L_n(y) dated Feb 02 2010 can be restated as follows: L_n(lambda) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) lambda. - Shai Covo (green355(AT)netvision.net.il), Feb 10 2010
See A111596 for an expression of the row polynomials in terms of an umbral composition of the Bell polynomials and relation to an inverse Mellin transform and a generalized Dobinski formula. - Tom Copeland, Nov 21 2011
Also the Bell transform of the sequence (-1)^(n+1)*(n+1)! without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Named after the Slovenian mathematician and actuary Ivo Lah (1896-1979). - Amiram Eldar, Jun 13 2021

Examples

			|a(2,1)| = 2: (12), (21); |a(2,2)| = 1: (1)(2). |a(4,1)| = 24: (1234) (24 ways); |a(4,2)| = 36: (123)(4) (6*4 ways), (12)(34) (3*4 ways); |a(4,3)| = 12: (12)(3)(4) (6*2 ways); |a(4,4)| = 1: (1)(2)(3)(4) (1 way).
Triangle:
    -1;
     2,    1;
    -6,   -6,   -1;
    24,   36,   12,   1;
  -120, -240, -120, -20, -1; ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • Shai Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci., Vol. 7, No. 1 (2009), pp. 91-100.
  • Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176; the sequence called {!}^{n+}. For a link to this paper see A000262.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985; see p. 176.

Crossrefs

Same as A066667 and A105278 except for signs. Other variants: A111596 (differently signed triangle and (0,0)-based), A271703 (unsigned and (0,0)-based), A089231.
A293125 (row sums) and A000262 (row sums of unsigned triangle).
Columns 1-6 (unsigned): A000142, A001286, A001754, A001755, A001777, A001778.
A002868 gives maximal element (in magnitude) in each row.
A248045 (central terms, negated). A130561 is a natural refinement.

Programs

  • Haskell
    a008297 n k = a008297_tabl !! (n-1) !! (k-1)
    a008297_row n = a008297_tabl !! (n-1)
    a008297_tabl = [-1] : f [-1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = map negate $
              zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014
    
  • Maple
    A008297 := (n,m) -> (-1)^n*n!*binomial(n-1,m-1)/m!;
  • Mathematica
    a[n_, m_] := (-1)^n*n!*Binomial[n-1, m-1]/m!; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after Maple *)
    T[n_, n_] := (-1)^n; T[n_, k_]/;0Oliver Seipel, Dec 06 2024 *)
  • PARI
    T(n, m) = (-1)^n*n!*binomial(n-1, m-1)/m!
    for(n=1,9, for(m=1,n, print1(T(n,m)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Perl
    use bigint; use ntheory ":all"; my @L; for my $n (1..9) { push @L, map { stirling($n,$,3)*(-1)**$n } 1..$n; } say join(", ",@L); # _Dana Jacobsen, Mar 16 2017
  • Sage
    def A008297_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2+2*k)*M[n-1,k]+((k+1)*(k+2))*M[n-1,k+1]
        return M
    A008297_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = (-1)^n*n!*A007318(n-1, m-1)/m!, n >= m >= 1.
a(n+1, m) = (n+m)*a(n, m)+a(n, m-1), a(n, 0) := 0; a(n, m) := 0, n < m; a(1, 1)=1.
a(n, m) = ((-1)^(n-m+1))*L(1, n-1, m-1) where L(1, n, m) is the triangle of coefficients of the generalized Laguerre polynomials n!*L(n, a=1, x). These polynomials appear in the radial l=0 eigen-functions for discrete energy levels of the H-atom.
|a(n, m)| = Sum_{k=m..n} |A008275(n, k)|*A008277(k, m), where A008275 = Stirling numbers of first kind, A008277 = Stirling numbers of second kind. - Wolfdieter Lang
If L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then the e.g.f. for L_n(y) is exp(x*y/(1-x)). - Vladeta Jovovic, Jan 06 2001
E.g.f. for the k-th column (unsigned): x^k/(1-x)^k/k!. - Vladeta Jovovic, Dec 03 2002
a(n, k) = (n-k+1)!*N(n, k) where N(n, k) is the Narayana triangle A001263. - Philippe Deléham, Jul 20 2003
From Shai Covo (green355(AT)netvision.net.il), Feb 02 2010: (Start)
We have the following expressions for the Lah polynomial L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k -- exact generalizations of results in A000262 for A000262(n) = L_n(1):
1) L_n(y) = y*exp(-y)*n!*M(n+1,2,y), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind;
2) L_n(y) = exp(-y)* Sum_{m>=0} y^m*[m]^n/m!, n>=0, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial;
3) L_n(y) = (2n-2+y)L_{n-1}(y)-(n-1)(n-2)L_{n-2}(y), n>=2;
4) L_n(y) = y*(n-1)!*Sum_{k=1..n} (L_{n-k}(y) k!)/((n-k)! (k-1)!), n>=1. (End)
The row polynomials are given by D^n(exp(-x*t)) evaluated at x = 0, where D is the operator (1-x)^2*d/dx. Cf. A008277 and A035342. - Peter Bala, Nov 25 2011
n!C(-xD,n) = Lah(n,:xD:) where C(m,n) is the binomial coefficient, xD= x d/dx, (:xD:)^k = x^k D^k, and Lah(n,x) are the row polynomials of this entry. E.g., 2!C(-xD,2)= 2 xD + x^2 D^2. - Tom Copeland, Nov 03 2012
From Tom Copeland, Sep 25 2016: (Start)
The Stirling polynomials of the second kind A048993 (A008277), i.e., the Bell-Touchard-exponential polynomials B_n[x], are umbral compositional inverses of the Stirling polynomials of the first kind signed A008275 (A130534), i.e., the falling factorials, (x)_n = n! binomial(x,n); that is, umbrally B_n[(x).] = x^n = (B.[x])_n.
An operational definition of the Bell polynomials is (xD_x)^n = B_n[:xD:], where, by definition, (:xD_x:)^n = x^n D_x^n, so (B.[:xD_x:])_n = (xD_x)_n = :xD_x:^n = x^n (D_x)^n.
Let y = 1/x, then D_x = -y^2 D_y; xD_x = -yD_y; and P_n(:yD_y:) = (-yD_y)_n = (-1)^n (1/y)^n (y^2 D_y)^n, the row polynomials of this entry in operational form, e.g., P_3(:yD_y:) = (-yD_y)_3 = (-yD_y) (yD_y-1) (yD_y-2) = (-1)^3 (1/y)^3 (y^2 D_y)^3 = -( 6 :yD_y: + 6 :yD_y:^2 + :yD_y:^3 ) = - ( 6 y D_y + 6 y^2 (D_y)^2 + y^3 (D_y)^3).
Therefore, P_n(y) = e^(-y) P_n(:yD_y:) e^y = e^(-y) (-1/y)^n (y^2 D_y)^n e^y = e^(-1/x) x^n (D_x)^n e^(1/x) = P_n(1/x) and P_n(x) = e^(-1/x) x^n (D_x)^n e^(1/x) = e^(-1/x) (:x D_x:)^n e^(1/x). (Cf. also A094638.) (End)
T(n,k) = Sum_{j=k..n} (-1)^j*A008296(n,j)*A360177(j,k). - Mélika Tebni, Feb 02 2023

A048854 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].

Original entry on oeis.org

1, 2, 1, 12, 12, 1, 120, 180, 30, 1, 1680, 3360, 840, 56, 1, 30240, 75600, 25200, 2520, 90, 1, 665280, 1995840, 831600, 110880, 5940, 132, 1, 17297280, 60540480, 30270240, 5045040, 360360, 12012, 182, 1, 518918400, 2075673600, 1210809600, 242161920, 21621600, 960960, 21840, 240, 1, 17643225600, 79394515200, 52929676800, 12350257920, 1323241920, 73513440, 2227680, 36720, 306, 1
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := Sum_{m=0..n} T(n,m)*x^m are monic polynomials satisfying s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} A048786(n,m)*x^m (row polynomials of triangle A048786) and p(0,x)=1.
In the umbral calculus (see the Roman reference, p. 21) the s(n,x) are called Sheffer polynomials for(1/sqrt(1+4*t),t/(1+4*t)). Here the Sheffer notation differs. See the W. Lang link under A006232.
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,1], the Sheffer triangle ((1 - 4*t)^(-1/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,1](x, n) = Sum_{m=0..n} L[4,1](n, m)*fallfac[4,1](x, m), where risefac[4,1](x, n) := Product_{0..n-1} (x + (1 + 4*j)) for n >= 1 and risefac[4,1](x, 0) := 1, and fallfac[4,1](x, n) := Product_{0..n-1} (x - (1 + 4*j)) for n >= 1 and fallfac[4,1](x, 0) := 1.
In matrix notation: L[4,1] = S1phat[4,1]*S2hat[4,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A290319 and A111578 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-1/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292220(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,1] is Sheffer ((1 + 4*t)^(-1/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,1](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A091042(d, m)*x^m/(1 - x)^{2*d + 1}, for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(n + d),2*d)}{n >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
n\m         0          1          2         3        4      5     6   7 8  ...
0:          1
1:          2          1
2:         12         12          1
3:        120        180         30         1
4:       1680       3360        840        56        1
5:      30240      75600      25200      2520       90      1
6:     665280    1995840     831600    110880     5940    132     1
7:   17297280   60540480   30270240   5045040   360360  12012   182   1
8:  518918400 2075673600 1210809600 242161920 21621600 960960 21840 240 1
...
n = 9: 17643225600 79394515200 52929676800 12350257920 1323241920 73513440 2227680 36720 306 1,
n = 10: 670442572800 3352212864000 2514159648000 670442572800 83805321600 5587021440 211629600 4651200 58140 380 1.
...
Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 4*4*T(3, 2) = 2*180 + 16*30 = 840.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(2*120 + 2*180 - 8*30 + 60*1) = 1680.
Four term recurrence: T(4, 2) = T(3, 1) + 2*13*T(3, 2) - 8*3*5*T(2, 2) =  180 + 26*30 - 120*1 = 840.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(12 + 12*x + 1*x^2) = (12 + 2*x) - 4*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 8*(1 + x)*D_x + 16*x*(D_x)^2] (12 + 12*x + 1*x^2) = (2 + x)*(12 + 12*x + x^2) + 8*(1 + x)*(12 + 2*x) + 16*2*x = 120 + 180*x + 30*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*10/2)*(1*30/3! + 4*1/2!) = 840.
Diagonal sequence d = 2: {12, 180, 840 ...} has o.g.f. 12*(1 + 10*x + 5*x^2)/(1 - x)^5  (see A001813(2) and row n=2 of A091042) generating
{12*binomial(2*(n + 2), 4)}_{n >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Related to triangle A046521. Cf. A048786. a(n, 0) = A001813.
A111578, A271703 L[1,0], A286724 L[2,1], A290319, A290596 L[3,1], A290597 L[3,2], A292220.
The diagonal sequences are: A000012, 2*A000384(n+1), 12*A053134, 120*A053135, 1680*A053137, ... - Wolfdieter Lang, Oct 12 2017

Programs

  • Maple
    A290604_row := proc(n) exp(x*t/(1-4*t))/sqrt(1-4*t): series(%, t, n+2): seq(n!*coeff(coeff(%,t,n),x,j), j=0..n) end: seq(A290604_row(n), n=0..9); # Peter Luschny, Sep 23 2017
  • Mathematica
    T[n_, m_] := n!/m! * Binomial[2*n, n] * Binomial[n, m] / Binomial[2*m, m]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[0, 0] = 1; T[-1, ] = T[, -1] = 0; T[n_, m_] /; n < m = 0; T[n_, m_] := T[n, m] = T[n-1, m-1] + 2*(4*n-3)*T[n-1, m] - 8*(n-1)*(2*n-3)*T[n-2, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 23 2017 *)

Formula

T(n, m) = (n!/m!)*A046521(n, m) = (n!/m!)* binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0, a(n, m) := 0, n < m.
Sum_{n>=0, k>=0} T(n, k)*x^n*y^k/(2*n)! = exp(x)*cosh(sqrt(x*y)). - Vladeta Jovovic, Feb 21 2003
T(n, m) = L[4,1](n,m) = Sum_{k=m..n} A290319(n, k)*A111578(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-1/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-1/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0..n-1} z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and the z(j) = 2*A292220(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 3)*T(n-1, m) - 8*(n-1)*(2*n - 3)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 8*(1 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 4*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n,2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

Extensions

Name changed, after merging my newer duplicate, from Wolfdieter Lang, Oct 10 2017

A034177 a(n) is the n-th quartic factorial number divided by 4.

Original entry on oeis.org

1, 8, 96, 1536, 30720, 737280, 20643840, 660602880, 23781703680, 951268147200, 41855798476800, 2009078326886400, 104472072998092800, 5850436087893196800, 351026165273591808000, 22465674577509875712000, 1527665871270671548416000, 109991942731488351485952000
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 8*x^2 + 96*x^3 + 1536*x^4 + 30720*x^5 + 737820*x^6 + ...
		

Crossrefs

Cf. A007696, A000407, A034176. First column of triangle A048786.
A052570 is an essentially identical sequence. - Philippe Deléham, Sep 18 2008
Equals the second right hand column of A167569 divided by 2. - Johannes W. Meijer, Nov 12 2009

Programs

  • GAP
    List([1..20], n-> 4^(n-1)*Factorial(n) ); # G. C. Greubel, Aug 15 2019
  • Magma
    [4^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    [seq(n!*4^(n-1), n=1..16)]; # Zerinvary Lajos, Sep 23 2006
  • Mathematica
    Array[4^(# - 1) #! &, 16] (* Michael De Vlieger, May 30 2019 *)
  • PARI
    vector(20, n, 4^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [4^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

4*a(n) = (4*n)(!^4) = Product_{j=1..n} 4*j = 4^n * n!.
E.g.f.: (-1 + 1/(1-4*x))/4.
D-finite with recurrence: a(n) -4*n*a(n-1)=0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*(exp(1/4)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*(1-exp(-1/4)). (End)

A048870 Triangle of coefficients of certain Sheffer-polynomials.

Original entry on oeis.org

1, 1, 1, 4, 10, 1, 30, 132, 27, 1, 336, 2232, 696, 52, 1, 5040, 46320, 19500, 2200, 85, 1, 95040, 1141920, 606960, 91800, 5340, 126, 1, 2162160, 32639040, 20991600, 3986640, 310170, 11004, 175, 1, 57657600, 1061746560, 802287360, 183550080
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := sum(a(n,m)*x^m,m=0..n) are monic polynomials satisfying s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(A048786(n,m)*x^m, m=1..n) (row polynomials of triangle A048786) and p(0,x)=1. In the umbral calculus (see reference) the s(n,x) are called Sheffer polynomials for(c(t/(1+4*t)),t/(1+4*t)), where c(x) = g.f. for Catalan numbers A000108. a(n,0) = A001761(n-2) = n!*A000108(n).

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Formula

a(n, m) = (n!/m!)*A046527(n, m) = (n!/m!)*binomial(n, m-1)*(4^(n-m+1)-binomial(2*n, n)/binomial(2*(m-1), m-1))/2, n >= m >= 0, a(n, m) := 0, n
Showing 1-4 of 4 results.