cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A167570 The third right hand column of triangle A167569.

Original entry on oeis.org

6, 80, 1344, 27648, 675840, 19169280, 619315200, 22460497920, 903704739840, 39953262182400, 1925366729932800, 100453916344320000, 5641491941897011200, 339325293097805414400, 21763622246962692096000
Offset: 3

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third right hand column of triangle A167569.

Programs

  • Mathematica
    Table[4^(n-3) (n-3)! (2n-3)!/(2n-5)!,{n,3,20}] (* Harvey P. Dale, Nov 27 2011 *)

Formula

a(n) = 4^(n-3)*(n-3)!*(2*n-3)!/(2*n-5)!.

A167571 The row sums of triangle A167569.

Original entry on oeis.org

1, 6, 54, 680, 11160, 226800, 5504688, 155433600, 5006655360, 181193760000, 7279267564800, 321452513141760, 15477343917235200, 806956698772224000, 45293698702796544000, 2723112069367173120000, 174590385277914250444800
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

A167569 is the lower left triangle of the ED2 array A167560.

Crossrefs

A167560 is the ED2 array.
Equals the row sums of triangle A167569.

Programs

  • Mathematica
    Table[n! (4^n - 1) / (2 n + 1), {n, 1, 20}] (* Vincenzo Librandi, Jun 23 2013 *)

Formula

a(n) = sum(4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)!, m=1..n).
a(n) = n!*(4^n - 1)/(2*n + 1). - Peter Bala, Jun 21 2013
E.g.f. 1/(4*sqrt(x))*log((1 - 3*x + 2*x^(3/2))/(1 - 3*x - 2*x^(3/2))). - Peter Bala, Jun 21 2013

A047053 a(n) = 4^n * n!.

Original entry on oeis.org

1, 4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, 3805072588800, 167423193907200, 8036313307545600, 417888291992371200, 23401744351572787200, 1404104661094367232000, 89862698310039502848000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Original name was "Quadruple factorial numbers".
For n >= 1, a(n) is the order of the wreath product of the cyclic group C_4 and the symmetric group S_n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Number of n X n monomial matrices with entries 0, +/-1, +/-i.
a(n) is the product of the positive integers <= 4*n that are multiples of 4. - Peter Luschny, Jun 23 2011
Also, a(n) is the number of signed permutations of length 2*n that are equal to their reverse-complements. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011.
Pi^n/a(n) is the volume of a 2*n-dimensional ball with radius 1/2. - Peter Luschny, Jul 24 2012
Equals the first right hand column of A167557, and also equals the first right hand column of A167569. - Johannes W. Meijer, Nov 12 2009
a(n) is the order of the group U_n(Z[i]) = {A in M_n(Z[i]): A*A^H = I_n}, the group of n X n unitary matrices over the Gaussian integers. Here A^H is the conjugate transpose of A. - Jianing Song, Mar 29 2021

Examples

			G.f. = 1 + 4*x + 32*x^2 + 384*x^3 + 6144*x^4 + 122880*x^5 + 2949120*x^6 + ...
		

Crossrefs

a(n)= A051142(n+1, 0) (first column of triangle).

Programs

  • Magma
    [4^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 20 2011
  • Maple
    A047053:= n -> mul(k, k = select(k-> k mod 4 = 0, [$1..4*n])): seq(A047053(n), n = 0.. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    a[n_]:= With[{m=2n}, If[ m<0, 0, m!*SeriesCoefficient[1 +Sqrt[Pi]*x*Exp[x^2]*Erf[x], {x, 0, m}]]]; (* Michael Somos, Jan 03 2015 *)
    Table[4^n n!,{n,0,20}] (* Harvey P. Dale, Sep 19 2021 *)
  • PARI
    a(n)=4^n*n!;
    

Formula

a(n) = 4^n * n!.
E.g.f.: 1/(1 - 4*x).
Integral representation as the n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/4, n >= 0. This representation is unique. - Karol A. Penson, Jan 28 2002 [corrected by Jason Yuen, May 04 2025]
Sum_{k>=0} (-1)^k/(2*k + 1)^n = (-1)^n * n * (PolyGamma[n-1, 1/4] - PolyGamma[n-1, 3/4]) / a(n) for n > 0. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 27 2006
a(n) = Sum_{k=0..n} C(n,k)*(2k)!*(2(n-k))!/(k!(n-k)!) = Sum_{k=0..n} C(n,k)*A001813(k)*A001813(n-k). - Paul Barry, May 04 2007
E.g.f.: With interpolated zeros, 1 + sqrt(Pi)*x*exp(x^2)*erf(x). - Paul Barry, Apr 10 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
G.f.: 1/(1 - 4*x/(1 - 4*x/(1 - 8*x/(1 - 8*x/(1 - 12*x/(1 - 12*x/(1 - 16*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k + 1)/(8*x*(k + 1) - 1 + 8*x*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x*(2*k + 1) - 16*x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = A000142(n) * A000302(n). - Michel Marcus, Nov 28 2013
a(n) = A087299(2*n). - Michael Somos, Jan 03 2015
D-finite with recurrence: a(n) - 4*n*a(n-1) = 0. - R. J. Mathar, Jan 27 2020
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/4) (A092042).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/4) (A092616). (End)

Extensions

Edited by Karol A. Penson, Jan 22 2002

A034177 a(n) is the n-th quartic factorial number divided by 4.

Original entry on oeis.org

1, 8, 96, 1536, 30720, 737280, 20643840, 660602880, 23781703680, 951268147200, 41855798476800, 2009078326886400, 104472072998092800, 5850436087893196800, 351026165273591808000, 22465674577509875712000, 1527665871270671548416000, 109991942731488351485952000
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 8*x^2 + 96*x^3 + 1536*x^4 + 30720*x^5 + 737820*x^6 + ...
		

Crossrefs

Cf. A007696, A000407, A034176. First column of triangle A048786.
A052570 is an essentially identical sequence. - Philippe Deléham, Sep 18 2008
Equals the second right hand column of A167569 divided by 2. - Johannes W. Meijer, Nov 12 2009

Programs

  • GAP
    List([1..20], n-> 4^(n-1)*Factorial(n) ); # G. C. Greubel, Aug 15 2019
  • Magma
    [4^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    [seq(n!*4^(n-1), n=1..16)]; # Zerinvary Lajos, Sep 23 2006
  • Mathematica
    Array[4^(# - 1) #! &, 16] (* Michael De Vlieger, May 30 2019 *)
  • PARI
    vector(20, n, 4^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [4^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

4*a(n) = (4*n)(!^4) = Product_{j=1..n} 4*j = 4^n * n!.
E.g.f.: (-1 + 1/(1-4*x))/4.
D-finite with recurrence: a(n) -4*n*a(n-1)=0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*(exp(1/4)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*(1-exp(-1/4)). (End)

A167560 The ED2 array read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED2 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED2 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
The ED2 array is related to the EG1 matrix, see A162005, because sum(EG1(2*m-1,n) * z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n), y=0..infinity).
For the ED1, ED3 and ED4 arrays see A167546, A167572 and A167584.

Examples

			The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
		

Crossrefs

A000012, A005843 (n>=1), 2*A104249 (n>=1), A167561, A167562 and A167563 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
Cf. A162005 (EG1 triangle).
Cf. A167546 (ED1 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
    # alternative
    A167560 := proc(n,m)
        option remember ;
        if m > n then
            n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
        else
            4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
        end if;
    end proc:
    seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = ((m-1)!/((m-n-1)!))*int(sinh(y*(2*n))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n-1,m-k),k=0..n-1) = n!
which in its turn leads to, see A167569,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! if m<=n.
Showing 1-5 of 5 results.