A167570
The third right hand column of triangle A167569.
Original entry on oeis.org
6, 80, 1344, 27648, 675840, 19169280, 619315200, 22460497920, 903704739840, 39953262182400, 1925366729932800, 100453916344320000, 5641491941897011200, 339325293097805414400, 21763622246962692096000
Offset: 3
Equals the third right hand column of triangle
A167569.
-
Table[4^(n-3) (n-3)! (2n-3)!/(2n-5)!,{n,3,20}] (* Harvey P. Dale, Nov 27 2011 *)
Original entry on oeis.org
1, 6, 54, 680, 11160, 226800, 5504688, 155433600, 5006655360, 181193760000, 7279267564800, 321452513141760, 15477343917235200, 806956698772224000, 45293698702796544000, 2723112069367173120000, 174590385277914250444800
Offset: 1
Equals the row sums of triangle
A167569.
A047053
a(n) = 4^n * n!.
Original entry on oeis.org
1, 4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, 3805072588800, 167423193907200, 8036313307545600, 417888291992371200, 23401744351572787200, 1404104661094367232000, 89862698310039502848000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 + 4*x + 32*x^2 + 384*x^3 + 6144*x^4 + 122880*x^5 + 2949120*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015), # 15.3.2.
- CombOS - Combinatorial Object Server, Generate colored permutations
- R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI.
- Sylvie Corteel and Lauren Williams, Tableaux Combinatorics for the Asymmetric Exclusion Process II, arXiv:0810.2916 [math.CO], 2008-2009.
- A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179-217.
- A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 492.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, 5 (2002), Article 02.1.7.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), Article 10.6.7, p. 39.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, 9 (2006), Article 06.1.1.
a(n)=
A051142(n+1, 0) (first column of triangle).
-
[4^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 20 2011
-
A047053:= n -> mul(k, k = select(k-> k mod 4 = 0, [$1..4*n])): seq(A047053(n), n = 0.. 16); # Peter Luschny, Jun 23 2011
-
a[n_]:= With[{m=2n}, If[ m<0, 0, m!*SeriesCoefficient[1 +Sqrt[Pi]*x*Exp[x^2]*Erf[x], {x, 0, m}]]]; (* Michael Somos, Jan 03 2015 *)
Table[4^n n!,{n,0,20}] (* Harvey P. Dale, Sep 19 2021 *)
-
a(n)=4^n*n!;
A034177
a(n) is the n-th quartic factorial number divided by 4.
Original entry on oeis.org
1, 8, 96, 1536, 30720, 737280, 20643840, 660602880, 23781703680, 951268147200, 41855798476800, 2009078326886400, 104472072998092800, 5850436087893196800, 351026165273591808000, 22465674577509875712000, 1527665871270671548416000, 109991942731488351485952000
Offset: 1
G.f. = x + 8*x^2 + 96*x^3 + 1536*x^4 + 30720*x^5 + 737820*x^6 + ...
-
List([1..20], n-> 4^(n-1)*Factorial(n) ); # G. C. Greubel, Aug 15 2019
-
[4^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
-
[seq(n!*4^(n-1), n=1..16)]; # Zerinvary Lajos, Sep 23 2006
-
Array[4^(# - 1) #! &, 16] (* Michael De Vlieger, May 30 2019 *)
-
vector(20, n, 4^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
-
[4^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
Showing 1-5 of 5 results.
Comments