cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A087547 a(n) = n!*2^(n+1) * (Integral_{x = 0..1} 1/(1+x^2)^(n+1) dx) - Pi*(2*n)!/(2^(n+1)*n!).

Original entry on oeis.org

0, 1, 4, 22, 160, 1464, 16224, 211632, 3179520, 54092160, 1028113920, 21594021120, 496702402560, 12418039065600, 335293281792000, 9723592350259200, 301432670532403200, 9947299050359193600, 348155822449999872000, 12881771833023700992000, 502389223133024747520000
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Oct 24 2003

Keywords

Comments

a(n)/A001147 gives an approximation for Pi/2 with (n-1)/3 + 1 digits of accuracy. - Aaron Kastel, Nov 13 2012
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that none of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Examples

			a(3) = 22.
		

Crossrefs

Programs

  • Magma
    [0] cat [n eq 1 select 1 else (2*n-1)*Self(n-1)+Factorial(n-1): n in [1..25]]; // Vincenzo Librandi, Nov 07 2014
    
  • Magma
    I:=[1,4]; [0] cat [n le 2 select I[n]  else (3*n-2)*Self(n-1)-(n-1)*(2*n-3)*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    f := proc(n) 4*n!*2^(n-1) * (int (1/(1+x^2)^(n+1),x=0..1)) - Pi*(2*n)!/(2^(n+1)*n!); end; # N. J. A. Sloane, Oct 30 2003
  • Mathematica
    f[n_] := Simplify[n!*2^(n + 1)*(Integrate[ 1/(1 + x^2)^(n + 1), {x, 0, 1}]) - Pi(2n)!/(2^(n + 1)*n!)]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Oct 31 2003 *)
    CoefficientList[Normal[Series[1/Sqrt[1-2*x]*ArcTan[x/Sqrt[1-2*x]],{x,0,10}]]/.{x^n_.->x^n*n!},x] (* Donovan Young, Aug 11 2020 *)

Formula

a(n) = (2n-1)*a(n-1) + (n-1)!. - Aaron Kastel, Nov 13 2012
From Peter Bala, Jun 21 2013: (Start)
a(n) = (2*n)!/(n!*2^n)*(Sum_{k = 0..n-1} 2^k*k!^2/(2*k+1)!). Thus a(n)/ ((2*n)!/(n!*2^n)) -> Pi/2 as n -> infinity since Sum_{k >= 0} 2^k*k!^2/(2*k+1)! = Pi/2.
It appears that a(n) = Sum_{k = 1..n} 2^(k-1)*(k-1)!*(n+k-1)!/(2*k-1)!. Cf. A167571.
a(n) = (2*n)!/(n!*2^n)*(Pi/2) - 2^(n+1)*n!*(Integral_{x = 0..1} x^(2*n)/(1 + x^2)^(n+1) dx). Cf. A068102. (End)
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 2)*a(n-1) - (n - 1)*(2*n - 3)*a(n-2) with a(1) = 1 and a(2) = 4.
The sequence b(n) = A001147(n), beginning [1, 3, 15, 105, 945, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion lim_{n -> infinity} a(n)/b(n) = Pi/2 = 1 + 1/(3 - 6/(7 - 15/(10 - ... - n*(2*n - 1)/((3*n + 1) - ... )))). (End)
E.g.f.: arctan(x/sqrt(1 - 2*x))/sqrt(1 - 2*x). - Donovan Young, Aug 11 2020
From Sela Fried, Apr 13 2023: (Start)
a(n) = (n - 1)!*Sum_{k=0..n - 1} binomial(2*n - 1, 2*k)/binomial(n - 1, k).
a(n)/(n-1)! = 1 + (2*n - 1)/2*Integral_{t = 0..Pi/2} (1 + sin(2*t))^(n - 1) - (1 - sin(2*t))^(n - 1)dt.
Bala's conjecture is true. (End)
a(n) ~ Pi * 2^(n - 1/2) * n^n / exp(n). - Vaclav Kotesovec, Apr 13 2023
a(n) = (n - 1)!/2 * Sum_{k=0..n - 1} binomial(2*n, 2*k + 1)/binomial(n - 1, k). - Sela Fried, May 18 2023

Extensions

More terms from N. J. A. Sloane, Oct 30 2003

A167569 The lower left triangle of the ED2 array A167560.

Original entry on oeis.org

1, 2, 4, 6, 16, 32, 24, 80, 192, 384, 120, 480, 1344, 3072, 6144, 720, 3360, 10752, 27648, 61440, 122880, 5040, 26880, 96768, 276480, 675840, 1474560, 2949120, 40320, 241920, 967680, 3041280, 8110080, 19169280, 41287680, 82575360
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

We discovered that the numbers that appear in the lower left triangle of the ED2 array A167560 (m <= n) behave in a regular way, see the formula below. This rather simple regularity doesn't show up in the upper right triangle of the ED2 array (m > n).

Examples

			The first few triangle rows are:
[1]
[2, 4]
[6, 16, 32]
[24, 80, 192, 384]
[120, 480, 1344, 3072, 6144]
[720, 3360, 10752, 27648, 61440, 122880]
		

Crossrefs

A167560 is the ED2 array.
A047053, 2*A034177 and A167570 are the first three right hand triangle columns.
A000142, 4*A001715, 32*A001725, 384* A049388 and 6144* A049398 are the first five left hand triangle columns.
A167571 equals the row sums.

Programs

  • Maple
    a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
  • Mathematica
    Flatten[Table[4^(m - 1)*(m - 1)!*(n + m - 1)!/(2*m - 1)!, {n, 1, 50}, {m, n}]] (* G. C. Greubel, Jun 16 2016 *)

Formula

a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)!.
Showing 1-2 of 2 results.