A034264 a(n) = f(n,4) where f is given in A034261.
0, 1, 11, 56, 196, 546, 1302, 2772, 5412, 9867, 17017, 28028, 44408, 68068, 101388, 147288, 209304, 291669, 399399, 538384, 715484, 938630, 1216930, 1560780, 1981980, 2493855, 3111381, 3851316, 4732336, 5775176, 7002776, 8440432
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Cf. A034261.
Programs
-
Maple
A034261 := proc(n, k) binomial(n+k, k+1)*(n*k+n+1)/(k+2); end; seq( A034261(n,4),n=0..40) ;
-
Mathematica
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,11,56,196,546,1302},40] (* Harvey P. Dale, Jul 11 2025 *)
Formula
G.f.: -x*(1+4*x)/(x-1)^7. - R. J. Mathar, Feb 10 2025
a(n) = n*(5*n+1)*(n+4)*(n+3)*(n+2)*(n+1)/720. - R. J. Mathar, Feb 10 2025
Extensions
Corrected and extended by N. J. A. Sloane, Apr 21 2000