cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034261 Infinite square array f(a,b) = C(a+b,b+1)*(a*b+a+1)/(b+2), a, b >= 0, read by antidiagonals. Equivalently, triangular array T(n,k) = f(k,n-k), 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 6, 0, 1, 7, 14, 10, 0, 1, 9, 25, 30, 15, 0, 1, 11, 39, 65, 55, 21, 0, 1, 13, 56, 119, 140, 91, 28, 0, 1, 15, 76, 196, 294, 266, 140, 36, 0, 1, 17, 99, 300, 546, 630, 462, 204, 45, 0, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55
Offset: 0

Views

Author

Keywords

Comments

f(h,k) = number of paths consisting of steps from (0,0) to (h,k) using h unit steps right, k+1 unit steps up and 1 unit step down, in some order, with first step not down and no repeated points.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 1, 3;
  0, 1, 5,  6;
  0, 1, 7, 14, 10;
  ...
As a square array,
  [ 0  0  0   0   0 ...]
  [ 1  1  1   1   1 ...]
  [ 3  5  7   9  11 ...]
  [ 6 14 25  39  56 ...]
  [10 30 65 119 196 ...]
  [...      ...     ...]
		

Crossrefs

Cf. A001787 (row sums), A000330(n) = f(n,1).
Cf. A034263, A034264, A034265, A034267 - A034275 for diagonals n -> f(n,n+k), for several fixed k.

Programs

  • Maple
    A034261 := proc(n, k) binomial(n, n-k+1)*(k+(k-1)/(k-n-2)); end proc; # argument indices of the triangle
  • Mathematica
    Flatten[Table[Binomial[n,n-k+1](k+(k-1)/(k-n-2)),{n,0,15},{k,0,n}]] (* Harvey P. Dale, Jan 11 2013 *)
  • PARI
    f(h,k)=binomial(h+k,k+1)*(k*h+h+1)/(k+2)
    
  • PARI
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(binomial(n, n-k+1)*(k+(k-1)/(k-n-2)), ", ")); print()); \\ Michel Marcus, Mar 20 2015

Formula

Another formula: f(h,k) = binomial(h+k,k+1) + Sum{C(i+j-1, j)*C(h+k-i-j, k-j+1): i=1, 2, ..., h-1, j=1, 2, ..., k+1}

Extensions

Entry revised by N. J. A. Sloane, Apr 21 2000. The formula for f in the definition was found by Michael Somos.
Edited by M. F. Hasler, Nov 08 2017

A107600 Column 5 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

1, 18, 101, 357, 978, 2274, 4711, 8954, 15915, 26806, 43197, 67079, 100932, 147798, 211359, 296020, 406997, 550410, 733381, 964137, 1252118, 1608090, 2044263, 2574414, 3214015, 3980366, 4892733, 5972491, 7243272, 8731118, 10464639
Offset: 9

Views

Author

Alford Arnold, May 17 2005

Keywords

Comments

The sequences in A089574 count ordered partitions. Sequence A001296 can be associated with 9 = 3+3+3. Six times sequence A005585, associated with 10 = 3+3+2+2. The other three sequences comprising A107600 are generated in A034261 and can be associated with 10 = 5 + 5 = 4 + 4 + 2 = 2 + 2 + 2 + 2 + 2.

Examples

			A107600(n) can be constructed from five other sequences as follows:
1...7...25...65...140.......A001296
....1...11...56...196.......A034264
....6...42..162...462.......6.*.A005585.
....3...18...60...150.......A006011
....1....5...14....30.......A000330
therefore
1..18..101..357...978.......A107600
		

Crossrefs

Programs

  • Maple
    a:= n-> `if` (n<9, 0, (92292 +(-6580 +(-5745 +(1535 +(-147+5*n) *n) *n) *n) *n) *n /720 -218): seq(a(n), n=9..45); # Alois P. Heinz, Nov 06 2009
  • Mathematica
    Select[CoefficientList[Series[(x^5-5x^4+7x^3+4x^2-11x-1)x^9/(x-1)^7, {x,0,50}],x],#>0&] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,18,101,357,978,2274,4711},42] (* Harvey P. Dale, May 01 2011 *)

Formula

G.f.: (x^5 -5*x^4 +7*x^3 +4*x^2 -11*x -1) *x^9 /(x-1)^7. - Alois P. Heinz, Nov 06 2009

Extensions

More terms from Alois P. Heinz, Nov 06 2009

A051946 Expansion of g.f.: (1+4*x)/(1-x)^7.

Original entry on oeis.org

1, 11, 56, 196, 546, 1302, 2772, 5412, 9867, 17017, 28028, 44408, 68068, 101388, 147288, 209304, 291669, 399399, 538384, 715484, 938630, 1216930, 1560780, 1981980, 2493855, 3111381, 3851316, 4732336, 5775176, 7002776, 8440432
Offset: 0

Views

Author

Barry E. Williams, Dec 20 1999

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005
Equals row sums of triangle A143130, and binomial transform of {1, 10, 35, 60, 55, 26, 5, 0, 0, 0, ...}. - Gary W. Adamson, Jul 27 2008

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 5).

Crossrefs

Partial sums of A027800.
Cf. A093562 ((5, 1) Pascal, column m=6).
Cf. A143130.
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..40], n-> (5*n+6)*Binomial(n+5,5)/6); # G. C. Greubel, Aug 28 2019
  • Magma
    [(5*n+6)*Binomial(n+5,5)/6: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720: seq(a(n),n=0..35); # Emeric Deutsch
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
  • PARI
    vector(40, n, (5*n+1)*binomial(n+4,5)/6) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [(5*n+6)*binomial(n+5,5)/6 for n in (0..40)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = binomial(n+5,5)*(5*n+6)/6.
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720. - Emeric Deutsch, Jun 18 2005
a(n) = A034264(n+1). - R. J. Mathar, Oct 14 2008

Extensions

Corrected and extended by Emeric Deutsch, Jun 18 2005
Showing 1-3 of 3 results.