cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034302 Zeroless primes that remain prime if any digit is deleted.

Original entry on oeis.org

23, 37, 53, 73, 113, 131, 137, 173, 179, 197, 311, 317, 431, 617, 719, 1499, 1997, 2239, 2293, 3137, 4919, 6173, 7433, 9677, 19973, 23833, 26833, 47933, 73331, 74177, 91733, 93491, 94397, 111731, 166931, 333911, 355933, 477797, 477977
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a034302 n = a034302_list !! (n-1)
    a034302_list = filter f $ drop 4 a038618_list where
       f x = all (== 1) $ map (a010051 . read) $
                 zipWith (++) (inits $ show x) (tail $ tails $ show x)
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Mathematica
    rpnzQ[n_]:=Module[{idn=IntegerDigits[n]},Count[idn,0]==0 && And@@ PrimeQ[FromDigits/@ Subsets[IntegerDigits[n], {Length[idn]-1}]]]; Select[Prime[Range[40000]],rpnzQ]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    is(n)=my(d=digits(n),t=2^#d-1); if(vecmin(d)==0, return(0)); for(i=0,#d-1, if(!isprime(fromdigits(vecextract(d,t-2^i))), return(0))); isprime(n) \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    from itertools import product
    from sympy import isprime
    A034302_list, m = [23, 37, 53, 73], 7
    for l in range(1,m-1): # generate all terms less than 10^m
        for d in product('123456789',repeat=l):
            for e in product('1379',repeat=2):
                s = ''.join(d+e)
                if isprime(int(s)):
                    for i in range(len(s)):
                        if not isprime(int(s[:i]+s[i+1:])):
                            break
                    else:
                        A034302_list.append(int(s)) # Chai Wah Wu, Apr 05 2021