A076832 Triangle T(n,k), read by rows, giving the total number of inequivalent binary linear [n,i] codes with no column of zeros, summed for i <= k (n >= 1, 1 <= k <= n).
1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 7, 19, 30, 35, 36, 1, 8, 29, 56, 73, 79, 80, 1, 10, 44, 107, 161, 186, 193, 194, 1, 12, 66, 200, 363, 462, 497, 505, 506, 1, 14, 96, 372, 837, 1222, 1392, 1439, 1448, 1449, 1, 16, 136, 680, 1963, 3435, 4282
Offset: 1
Examples
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: 1; 1, 2; 1, 3, 4; 1, 4, 7, 8; 1, 5, 11, 15, 16; 1, 7, 19, 30, 35, 36; 1, 8, 29, 56, 73, 79, 80; 1, 10, 44, 107, 161, 186, 193, 194; ...
Links
- Discrete algorithms at the University of Bayreuth, Symmetrica. [This package was used to compute T_{nk2} using the cycle index of PGL_k(2).]
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Tnk2: Number of the isometry classes of all binary (n,r)-codes for 1 <= r <= k without zero-columns. [This is a rectangular array whose lower triangle contains T(n,k).]
- Harald Fripertinger, Enumeration of isometry classes of linear (n,k)-codes over GF(q) in SYMMETRICA, Bayreuther Mathematische Schriften 49 (1995), 215-223. [See pp. 216-218. A C-program is given for calculating T_{nk2} in Symmetrica.]
- Harald Fripertinger, Cycle of indices of linear, affine, and projective groups, Linear Algebra and its Applications 263 (1997), 133-156. [See p. 152 for the computation of T_{nk2}.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Apparently, the notation for T(n,k) is T_{nk2}.]
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- Wikipedia, Cycle index.
- Wikipedia, Projective linear group.
- Index entries for sequences related to binary linear codes
Crossrefs
Programs
-
Maple
# We illustrate how to get a g.f. for column k in Maple when k is small. with(GroupTheory); G := ProjectiveGeneralLinearGroup(4, 2); GroupOrder(G); # We get that the order is 20160. f:=CycleIndexPolynomial(G, [x||(1..20160)]); # We get # 1/20160*x1^15 + 1/192*x1^7*x2^4 + 1/96*x1^3*x2^6 + 1/16*x1^3*x2^2*x4^2 + # 1/18*x1^3*x3^4 + 1/6*x1*x2*x3^2*x6 + 1/8*x1*x2*x4^3 + 1/180*x3^5 + 2/7*x1*x7^2 + # 1/12*x3*x6^2 + 1/15*x5^3 + 2/15*x15 # The only dummy variables that appear are x1, x2, x3, x4, x5, x6, x7, and x15. g:=subs(x1 = 1/(1 - y), subs(x2 = 1/(-y^2 + 1), subs(x3 = 1/(-y^3 + 1), subs(x4 = 1/(-y^4 + 1), subs(x5 = 1/(-y^5 + 1), subs(x6 = 1/(-y^6 + 1), subs(x7 = 1/(-y^7 + 1), subs(x15 = 1/(-y^15 + 1), f)))))))); # Then we take a Taylor expansion of the above g.f. taylor(g,y=0,50); # We get a Taylor expansion for column k = 4 (i.e., A034338). # Petros Hadjicostas, Sep 30 2019
-
Sage
# Fripertinger's method to find the g.f. of column k for small k: def A076832col(k, length): G = PSL(k, GF(2)) D = G.cycle_index() f = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D) return f.taylor(x, 0, length).list() # For instance the Taylor expansion for column k = 4 gives A034338: print(A076832col(4, 30)) # Petros Hadjicostas, Sep 30 2019
Extensions
Revised by N. J. A. Sloane, Mar 01 2004
Comments