A034597 Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.
1, 196560, 52416000, 6218175600, 565866362880, 45792819072000, 3486157968384000, 256206274225902000, 18422726047165440000, 1305984407917646096640, 91692325887531393024000
Offset: 0
Keywords
Examples
When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, Upper bounds for modular forms, lattices and codes, J. Alg., 36 (1975), 68-76.
- C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Programs
-
Maple
# Extremal theta series: with(numtheory): B := 1: # set mu: for mu from 1 to 10 do # set max deg: md := mu+3; f := 1+240*add(sigma[3](i)*x^i, i=1..md); f := series(f, x, md); f := series(f^3, x, md); g := series(x*mul((1-x^i)^24, i=1..md), x, md); W0 := series(f^mu, x, md): h := series(g/f, x, md): A := series(W0, x, md): Z := A: for i from 1 to mu do Z := series(Z*h, x, md); A := series(A-coeff(A, x, i)*Z, x, md); od: B := B, coeff(A,x,mu+1); od: lprint(B);
-
Mathematica
terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2,1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple *)