cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008408 Theta series of Leech lattice.

Original entry on oeis.org

1, 0, 196560, 16773120, 398034000, 4629381120, 34417656000, 187489935360, 814879774800, 2975551488000, 9486551299680, 27052945920000, 70486236999360, 169931095326720, 384163586352000, 820166620815360, 1668890090322000
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Third Edition, Springer-Verlag,1993, pp. 51, 134-135.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 113.
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Programs

  • Magma
    // Theta series of the Leech lattice, from John Cannon, Dec 29 2006
    A008408Q := function(prec) M12 := ModularForms(Gamma0(1), 12); t1 := Basis(M12)[1]; T := PowerSeries(t1, prec); return Coefficients(T); end function; Q := A008408Q(1000); Q[678];
    
  • Magma
    Basis( ModularForms( Gamma0(1), 12), 30) [1] ; /* Michael Somos, Jun 09 2014 */
    
  • Maple
    with(numtheory); f := 1+240*add(sigma[ 3 ](m)*q^(2*m),m=1..50); t := q^2*mul((1-q^(2*m))^24,m=1..50); series(f^3-720*t,q,51);
  • Mathematica
    max = 17; f = 1 + 240*Sum[ DivisorSigma[3, m]*q^(2m), {m, 1, max}]; t = q^2*Product[(1 - q^(2m))^24, {m, 1, max}]; Partition[ CoefficientList[ Series[f^3 - 720t, {q, 0, 2 max}], q], 2][[All, 1]] (* Jean-François Alcover , Oct 14 2011, after Maple *)
    (* From version 6 on *) f[q_] = LatticeData["Leech", "ThetaSeriesFunction"][x] /. x -> -I*Log[q]/Pi; Series[f[q], {q, 0, 32}] // CoefficientList[#, q^2]& (* Jean-François Alcover, May 15 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], SeriesCoefficient[(1 + 240 Sum[ q^k DivisorSigma[ 3, k], {k, n}])^3 - 720 q QPochhammer[ q]^24, {q, 0, n}]]; (* Michael Somos, Jun 09 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( 1 + (sum(k=1, n, sigma(k,11)*x^k) - x*eta(x + O(x^n))^24) * 65520/691, n))}; /* Michael Somos, Oct 19 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, n, 240*sigma(k,3)*x^k, 1 + x*O(x^n))^3 - 720*x*eta(x + O(x^n))^24, n))}; /* Michael Somos, Oct 19 2006 */
    
  • Python
    from sympy import divisor_sigma
    def A008408(n): return 65520*(divisor_sigma(n,11)-(n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m)))))//691 if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    A = ModularForms( Gamma0(1), 12, prec=30) . basis() ; A[1] - 65520/691*A[0] # Michael Somos, Jun 09 2014
    

Formula

The simplest way to obtain this is to take the cube of the theta series for E_8 (A004009) and subtract 720 times the g.f. for the Ramanujan numbers (A000594).
This theta series is thus also the q-expansion of (7/12) E_4(z)^3 + (5/12) E_6(z)^2. Cf. A013973. - Daniel D. Briggs, Nov 25 2011
a(n) = 65520*(A013959(n) - A000594(n))/691, n >= 1. a(0) = 1. Expansion of the Theta series of the Leech lattice in powers of q^2. See the Conway and Sloane reference. - Wolfdieter Lang, Jan 16 2017

A034414 Leading term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.

Original entry on oeis.org

1, 759, 17296, 249849, 3217056, 39703755, 481008528, 5776211364, 69065734464, 824142912363, 9826364199840, 117145945726810, 1396918583188128, 16665451879695801, 198937019774252928
Offset: 0

Views

Author

Keywords

Comments

The term after the leading nonzero term eventually becomes negative and so for large n the extremal codes do not exist (see references, also A034415).

Examples

			At length 24, the extremal weight enumerator is 1+759*x^8+2576*x^12+..., with leading coefficient 759; this is the weight enumerator of the binary Golay code.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.
  • C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.

Crossrefs

Cf. A034415 (second coefficient, which becmes negative), A001380, A034597.

Programs

  • Maple
    # Extremal weight enumerators:
    kernelopts(printbytes=false): interface(screenwidth=200);
    W0:=1; f:=1+14*x+x^2; f:=f^3; g:=x*(1-x)^4;
    for mu from 1 to 100 do
    # set max deg
    md:=mu+3; W0:=series(f^mu,x,md): h:=series(g/f,x,md): A:=series(W0,x,md): Z:=A:
    for i from 1 to mu do
    Z:=series(Z*h,x,md); A:=series(A-coeff(A,x,i)*Z,x,md); od: lprint(A);
    od:
  • Mathematica
    a[n_] := 18(6n-1)(8n-1)(12n-1)(24n-1)Binomial[5n-2, n-1]/((n+1)(2n+1)(4n+1)(4n+3)); a[0] = 1; Table[a[n], {n, 0, 14}](* Jean-François Alcover, Oct 06 2011, after formula *)

Formula

a(24n) = C(24n, 5)*C(5n-2, n-1)/C(4n+4, 5).

A034415 Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.

Original entry on oeis.org

1, 2576, 535095, 18106704, 369844880, 6101289120, 90184804281, 1251098739072, 16681003659936, 216644275600560, 2763033644875595, 34784314216176096, 433742858109499536, 5369839142579042560
Offset: 0

Views

Author

Keywords

Comments

The terms become negative at n=154 and so certainly by that point the extremal codes do not exist (see references).
Up to n = 250 the terms steadily increase in magnitude, but their sign changes from positive to negative at n = 154.

Examples

			At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.

Crossrefs

Cf. A034414 (leading coefficient), A001380, A034597, A034598.

Programs

  • Maple
    For Maple program see A034414.

A034598 Second coefficient of extremal theta series of even unimodular lattice in dimension 24n.

Original entry on oeis.org

1, 16773120, 39007332000, 15281788354560, 2972108280960000, 406954241261568000, 45569082381053868000, 4499117081888292864000, 408472720963469499617280, 34975479259332252426240000
Offset: 0

Views

Author

Keywords

Comments

Although these initially increase, they eventually go negative at about term 1700 (i.e. dimension about 40800) - see references.

Examples

			When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Cf. A034597 (leading coefficient).

Programs

  • Maple
    For Maple program see A034597.
  • Mathematica
    terms = 10; Reap[For[mu = 1; Print[1]; Sow[1], mu < terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[i = 1, i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+2}]; Print[an]; Sow[an]]][[2,1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple program for A034597 *)
Showing 1-4 of 4 results.