cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001380 Weight distribution of binary Golay code of length 24.

Original entry on oeis.org

1, 0, 759, 2576, 759, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			The weight enumerator is x^24+759*x^16*y^8+2576*x^12*y^12+759*x^8*y^16+y^24.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 84.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 71.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 67.

Crossrefs

Programs

  • Maple
    g24 := x^24+759*x^16*y^8+759*x^8*y^16+2576*x^12*y^12+y^24; e8 := x^8+14*x^4*y^4+y^8; d:=n->x^(n mod 2)*(1/2)*( (x^2+y^2)^floor((n)/2)+(x^2-y^2)^floor((n)/2));

A034597 Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.

Original entry on oeis.org

1, 196560, 52416000, 6218175600, 565866362880, 45792819072000, 3486157968384000, 256206274225902000, 18422726047165440000, 1305984407917646096640, 91692325887531393024000
Offset: 0

Views

Author

Keywords

Examples

			When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Cf. A034598 (second coefficient, which eventually becomes negative), A034414, A034415.

Programs

  • Maple
    # Extremal theta series:
    with(numtheory): B := 1:
    # set mu:
    for mu from 1 to 10 do
       # set max deg:
       md := mu+3;
       f := 1+240*add(sigma[3](i)*x^i, i=1..md);
       f := series(f, x, md);
       f := series(f^3, x, md);
       g := series(x*mul((1-x^i)^24, i=1..md), x, md);
       W0 := series(f^mu, x, md):
       h := series(g/f, x, md):
       A := series(W0, x, md):
       Z := A:
       for i from 1 to mu do
          Z := series(Z*h, x, md);
          A := series(A-coeff(A, x, i)*Z, x, md);
       od:
       B := B, coeff(A,x,mu+1);
    od:
    lprint(B);
  • Mathematica
    terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}];  f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2,1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple *)

A034415 Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.

Original entry on oeis.org

1, 2576, 535095, 18106704, 369844880, 6101289120, 90184804281, 1251098739072, 16681003659936, 216644275600560, 2763033644875595, 34784314216176096, 433742858109499536, 5369839142579042560
Offset: 0

Views

Author

Keywords

Comments

The terms become negative at n=154 and so certainly by that point the extremal codes do not exist (see references).
Up to n = 250 the terms steadily increase in magnitude, but their sign changes from positive to negative at n = 154.

Examples

			At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.

Crossrefs

Cf. A034414 (leading coefficient), A001380, A034597, A034598.

Programs

  • Maple
    For Maple program see A034414.
Showing 1-3 of 3 results.