A105675
Highest minimal distance of any Type II doubly-even binary self-dual code of length 8n.
Original entry on oeis.org
4, 4, 8, 8, 8, 12, 12, 12
Offset: 1
At length 8 the only Type II doubly-even self-dual code is the Hamming code e_8, which has d=4, so a(1) = 4. The [24,12,8] Golay code has d=8, so a(3) = 8.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
- N. J. A. Sloane, Is There a (72,36) d = 16 Self-Dual Code?, IEEE Trans. Information Theory, vol. IT-19 (1973), p. 251.
A034414
Leading term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.
Original entry on oeis.org
1, 759, 17296, 249849, 3217056, 39703755, 481008528, 5776211364, 69065734464, 824142912363, 9826364199840, 117145945726810, 1396918583188128, 16665451879695801, 198937019774252928
Offset: 0
At length 24, the extremal weight enumerator is 1+759*x^8+2576*x^12+..., with leading coefficient 759; this is the weight enumerator of the binary Golay code.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.
- C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
- Seiichi Manyama, Table of n, a(n) for n = 0..919 (terms 0..250 from N. J. A. Sloane)
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
-
# Extremal weight enumerators:
kernelopts(printbytes=false): interface(screenwidth=200);
W0:=1; f:=1+14*x+x^2; f:=f^3; g:=x*(1-x)^4;
for mu from 1 to 100 do
# set max deg
md:=mu+3; W0:=series(f^mu,x,md): h:=series(g/f,x,md): A:=series(W0,x,md): Z:=A:
for i from 1 to mu do
Z:=series(Z*h,x,md); A:=series(A-coeff(A,x,i)*Z,x,md); od: lprint(A);
od:
-
a[n_] := 18(6n-1)(8n-1)(12n-1)(24n-1)Binomial[5n-2, n-1]/((n+1)(2n+1)(4n+1)(4n+3)); a[0] = 1; Table[a[n], {n, 0, 14}](* Jean-François Alcover, Oct 06 2011, after formula *)
A034415
Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.
Original entry on oeis.org
1, 2576, 535095, 18106704, 369844880, 6101289120, 90184804281, 1251098739072, 16681003659936, 216644275600560, 2763033644875595, 34784314216176096, 433742858109499536, 5369839142579042560
Offset: 0
At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.
- N. J. A. Sloane, Table of n, a(n) for n = 0..250
- C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
A002289
Weight distribution of [ 23,12,7 ] binary perfect Golay code.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 253, 506, 0, 0, 1288, 1288, 0, 0, 506, 253, 0, 0, 0, 0, 0, 0, 1
Offset: 0
- W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 71.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 635.
A105683
Weight distribution of [12,6,6]_3 ternary extended Golay code.
Original entry on oeis.org
1, 0, 264, 440, 24
Offset: 0
Weight enumerator is x^12 + 264*x^6*y^6 + 440*x^3*y^9 + 24*y^12.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
A122192
Sum of the n-th powers of the roots of the (reduced) weight enumerator of the extended Golay code (1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6).
Original entry on oeis.org
6, 0, -1518, -7728, 1149126, 9775920, -851127150, -10374206304, 619950551814, 10059106207584, -443172509029998, -9223980220220304, 309985135145332422, 8134978519171135632, -211181377213616588526, -6965969413257227260608, 139095682365347347024902
Offset: 0
-
Newt:=proc(f) local t1,t2,t3,t4; t1:=f; t2:=diff(f,x); t3:=expand(x^degree(t1,x)*subs(x=1/x,t1)); t4:=expand(x^degree(t2,x)*subs(x=1/x,t2)); factor(t4/t3); end;
g:=1+759*x^2+2576*x^3+759*x^4+x^6; Newt(g); series(%,x,60);
-
LinearRecurrence[{0,-759,-2576,-759,0,-1}, {6,0,-1518,-7728,1149126,9775920}, 30] (* G. C. Greubel, Jul 11 2021 *)
-
polsym(x^6 + 759*x^4 + 2576*x^3 + 759*x^2 + 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
-
def A122192_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 6*(1+506*x^2+1288*x^3+253*x^4)/(1+759*x^2+2576*x^3+759*x^4 +x^6) ).list()
A122192_list(30) # G. C. Greubel, Jul 11 2021
A018235
Weight distribution of (48,2^24,12) binary code obtained from Golay code of length 24 lifted to Z/4Z and mapped to GF(2)^2.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 12144, 61824, 195063, 1133440, 1445136, 4080384, 2921232, 4080384, 1445136, 1133440, 195063, 61824, 12144, 0, 0, 0, 0, 0, 1
Offset: 0
- K. Tanabe, A criterion for designs in Z_4-codes on the symmetrized weight enumerator, Des. Codes Cryptogr. 30 (2003), 169-185.
- A. Bonnecaze and P. Sole, Quaternary Constructions of Formally Self-Dual Binary Codes and Unimodular Lattices, Lecture Notes in Computer Science, pages 194-206, 1994.
- A. Bonnecaze, P. Sole and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory, Vol. 41, pages 366-377, 1995.
A105547
Hamming weight distribution of code obtained by lifting Golay code of length 24 to Z/4Z.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 759, 0, 12144, 0, 172592, 61824, 765072, 1133440, 1239447, 4080384, 1445136, 4080384, 1870176, 1133440, 692208, 61824, 28385
Offset: 0
- S. T. Dougherty, S. Y. Kim and Y. H. Park, Lifted codes and their weight enumerators, Discrete Math., 305 (2005), 123-135.
- K. Tanabe, A criterion for designs in Z_4-codes on the symmetrized weight enumerator, Des. Codes Cryptogr. 30 (2003), 169-185.
- A. Bonnecaze and P. Sole, Quaternary Constructions of Formally Self-Dual Binary Codes and Unimodular Lattices, Lecture Notes in Computer Science, pages 194-206, 1994.
- A. Bonnecaze, P. Sole and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory, Vol. 41, pages 366-377, 1995.
A105684
Weight distribution of [11,6,5]_3 ternary Golay perfect code.
Original entry on oeis.org
1, 0, 0, 0, 0, 132, 132, 0, 330, 110, 0, 24
Offset: 0
Weight enumerator is x^11 + 132*x^6*y^5 + 132*x^5*y^6 + 330*x^3*y^8 + 110*x^2*y^9 + 24*y^11.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
Showing 1-9 of 9 results.
Comments