cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008408 Theta series of Leech lattice.

Original entry on oeis.org

1, 0, 196560, 16773120, 398034000, 4629381120, 34417656000, 187489935360, 814879774800, 2975551488000, 9486551299680, 27052945920000, 70486236999360, 169931095326720, 384163586352000, 820166620815360, 1668890090322000
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Third Edition, Springer-Verlag,1993, pp. 51, 134-135.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 113.
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Programs

  • Magma
    // Theta series of the Leech lattice, from John Cannon, Dec 29 2006
    A008408Q := function(prec) M12 := ModularForms(Gamma0(1), 12); t1 := Basis(M12)[1]; T := PowerSeries(t1, prec); return Coefficients(T); end function; Q := A008408Q(1000); Q[678];
    
  • Magma
    Basis( ModularForms( Gamma0(1), 12), 30) [1] ; /* Michael Somos, Jun 09 2014 */
    
  • Maple
    with(numtheory); f := 1+240*add(sigma[ 3 ](m)*q^(2*m),m=1..50); t := q^2*mul((1-q^(2*m))^24,m=1..50); series(f^3-720*t,q,51);
  • Mathematica
    max = 17; f = 1 + 240*Sum[ DivisorSigma[3, m]*q^(2m), {m, 1, max}]; t = q^2*Product[(1 - q^(2m))^24, {m, 1, max}]; Partition[ CoefficientList[ Series[f^3 - 720t, {q, 0, 2 max}], q], 2][[All, 1]] (* Jean-François Alcover , Oct 14 2011, after Maple *)
    (* From version 6 on *) f[q_] = LatticeData["Leech", "ThetaSeriesFunction"][x] /. x -> -I*Log[q]/Pi; Series[f[q], {q, 0, 32}] // CoefficientList[#, q^2]& (* Jean-François Alcover, May 15 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], SeriesCoefficient[(1 + 240 Sum[ q^k DivisorSigma[ 3, k], {k, n}])^3 - 720 q QPochhammer[ q]^24, {q, 0, n}]]; (* Michael Somos, Jun 09 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( 1 + (sum(k=1, n, sigma(k,11)*x^k) - x*eta(x + O(x^n))^24) * 65520/691, n))}; /* Michael Somos, Oct 19 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, n, 240*sigma(k,3)*x^k, 1 + x*O(x^n))^3 - 720*x*eta(x + O(x^n))^24, n))}; /* Michael Somos, Oct 19 2006 */
    
  • Python
    from sympy import divisor_sigma
    def A008408(n): return 65520*(divisor_sigma(n,11)-(n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m)))))//691 if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    A = ModularForms( Gamma0(1), 12, prec=30) . basis() ; A[1] - 65520/691*A[0] # Michael Somos, Jun 09 2014
    

Formula

The simplest way to obtain this is to take the cube of the theta series for E_8 (A004009) and subtract 720 times the g.f. for the Ramanujan numbers (A000594).
This theta series is thus also the q-expansion of (7/12) E_4(z)^3 + (5/12) E_6(z)^2. Cf. A013973. - Daniel D. Briggs, Nov 25 2011
a(n) = 65520*(A013959(n) - A000594(n))/691, n >= 1. a(0) = 1. Expansion of the Theta series of the Leech lattice in powers of q^2. See the Conway and Sloane reference. - Wolfdieter Lang, Jan 16 2017

A034597 Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.

Original entry on oeis.org

1, 196560, 52416000, 6218175600, 565866362880, 45792819072000, 3486157968384000, 256206274225902000, 18422726047165440000, 1305984407917646096640, 91692325887531393024000
Offset: 0

Views

Author

Keywords

Examples

			When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Cf. A034598 (second coefficient, which eventually becomes negative), A034414, A034415.

Programs

  • Maple
    # Extremal theta series:
    with(numtheory): B := 1:
    # set mu:
    for mu from 1 to 10 do
       # set max deg:
       md := mu+3;
       f := 1+240*add(sigma[3](i)*x^i, i=1..md);
       f := series(f, x, md);
       f := series(f^3, x, md);
       g := series(x*mul((1-x^i)^24, i=1..md), x, md);
       W0 := series(f^mu, x, md):
       h := series(g/f, x, md):
       A := series(W0, x, md):
       Z := A:
       for i from 1 to mu do
          Z := series(Z*h, x, md);
          A := series(A-coeff(A, x, i)*Z, x, md);
       od:
       B := B, coeff(A,x,mu+1);
    od:
    lprint(B);
  • Mathematica
    terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}];  f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2,1]] (* Jean-François Alcover, Jul 08 2017, adapted from Maple *)

A034415 Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.

Original entry on oeis.org

1, 2576, 535095, 18106704, 369844880, 6101289120, 90184804281, 1251098739072, 16681003659936, 216644275600560, 2763033644875595, 34784314216176096, 433742858109499536, 5369839142579042560
Offset: 0

Views

Author

Keywords

Comments

The terms become negative at n=154 and so certainly by that point the extremal codes do not exist (see references).
Up to n = 250 the terms steadily increase in magnitude, but their sign changes from positive to negative at n = 154.

Examples

			At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.

Crossrefs

Cf. A034414 (leading coefficient), A001380, A034597, A034598.

Programs

  • Maple
    For Maple program see A034414.
Showing 1-3 of 3 results.