cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034678 Sum of fourth powers of unitary divisors.

Original entry on oeis.org

1, 17, 82, 257, 626, 1394, 2402, 4097, 6562, 10642, 14642, 21074, 28562, 40834, 51332, 65537, 83522, 111554, 130322, 160882, 196964, 248914, 279842, 335954, 390626, 485554, 531442, 617314, 707282, 872644, 923522, 1048577, 1200644
Offset: 1

Views

Author

Keywords

Crossrefs

Row n=4 of A286880.

Programs

  • Mathematica
    Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^4], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *)
    a[1] = 1; a[n_] := Times @@ (1 + First[#]^(4*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *)
  • PARI
    A000012=direuler(p=2,119, 1/(1-X)) ;
    A000583=direuler(p=2,119, 1/(1-p^4*X)) ;
    A000290x=direuler(p=2,119, 1-p^4*X^2) ;
    dirmul(dirmul(A000012,A000583),A000290x) /* R. J. Mathar, Mar 05 2011 */

Formula

Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s-4). - R. J. Mathar, Mar 04 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(4*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ 189 * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019