A034678 Sum of fourth powers of unitary divisors.
1, 17, 82, 257, 626, 1394, 2402, 4097, 6562, 10642, 14642, 21074, 28562, 40834, 51332, 65537, 83522, 111554, 130322, 160882, 196964, 248914, 279842, 335954, 390626, 485554, 531442, 617314, 707282, 872644, 923522, 1048577, 1200644
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^4], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *) a[1] = 1; a[n_] := Times @@ (1 + First[#]^(4*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *)
-
PARI
A000012=direuler(p=2,119, 1/(1-X)) ; A000583=direuler(p=2,119, 1/(1-p^4*X)) ; A000290x=direuler(p=2,119, 1-p^4*X^2) ; dirmul(dirmul(A000012,A000583),A000290x) /* R. J. Mathar, Mar 05 2011 */
Formula
Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s-4). - R. J. Mathar, Mar 04 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(4*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ 189 * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019