A380551
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ).
Original entry on oeis.org
1, 1, 6, 28, 142, 720, 3875, 21288, 120168, 690546, 4032014, 23840724, 142498691, 859512043, 5225263875, 31983651216, 196947587822, 1219199232294, 7583142491924, 47365473951152, 296983176365613, 1868545308601424, 11793499763070479, 74650344221104632, 473770694965305205, 3014124873709172435
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 28*x^4 + 142*x^5 + 720*x^6 + 3875*x^7 + 21288*x^8 + 120168*x^9 + 690546*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 2*x^2 + 7*x^3 + 30*x^4 + 143*x^5 + 728*x^6 + 3876*x^7 + 21318*x^8 + ... + A006013(n)*x^(n+1) + ...
which equals x*F(x)^2 where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
-
\\ As the Moebius transform of A006013 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(3*d-1,d-1)*2/(3*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(2*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
A380552
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(3*n) ).
Original entry on oeis.org
1, 2, 14, 88, 611, 4372, 32889, 254384, 2017341, 16300550, 133767542, 1111727456, 9338434699, 79155402978, 676196048434, 5815796615520, 50318860986107, 437662918037250, 3824609516638443, 33563127916092808, 295655735395364616, 2613391671434553220, 23173063762591336049, 206066197523415007168
Offset: 1
G.f.: A(x) = x + 2*x^2 + 14*x^3 + 88*x^4 + 611*x^5 + 4372*x^6 + 32889*x^7 + 254384*x^8 + 2017341*x^9 + 16300550*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(3*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 3*x^2 + 15*x^3 + 91*x^4 + 612*x^5 + 4389*x^6 + 32890*x^7 + 254475*x^8 + ... + A006632(n)*x^(n) + ...
which equals x*F(x)^3 where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.
-
\\ As the Moebius transform of A006632 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(4*d-1,d-1)*3/(4*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(3*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(3*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
A380553
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
Original entry on oeis.org
1, 3, 25, 200, 1770, 16351, 158223, 1577328, 16112031, 167708890, 1772645419, 18974340640, 205263418940, 2240623110285, 24648785800540, 272994642782048, 3041495503591364, 34064252952038769, 383302465665133013, 4331178750570145160, 49126274119206904221, 559128033687856289017
Offset: 1
G.f.: A(x) = x + 3*x^2 + 25*x^3 + 200*x^4 + 1770*x^5 + 16351*x^6 + 158223*x^7 + 1577328*x^8 + 16112031*x^9 + 167708890*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 4*x^2 + 26*x^3 + 204*x^4 + 1771*x^5 + 16380*x^6 + 158224*x^7 + 1577532*x^8 + ... + A118971(n)*x^(n) + ...
which equals x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
-
\\ As the Moebius transform of A118971 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(5*d-1,d-1)*4/(5*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(4*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
A251662
Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764.
Original entry on oeis.org
1, 0, 2, 11, 54, 270, 1427, 7740, 43260, 246620, 1430714, 8414356, 50067107, 300829144, 1822766463, 11124747912, 68328754958, 422030501802, 2619631042664, 16332922043614, 102240109896265, 642312449787030, 4048514844039119, 25594403732709300, 162250238001816845, 1031147983109715120
Offset: 1
G.f.: A(x) = x + 2*x^3 + 11*x^4 + 54*x^5 + 270*x^6 + 1427*x^7 + 7740*x^8 +...
where Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x - x^2:
x-x^2 = A(x*(1-x)^2) + A(x^2*(1-x)^4) + A(x^3*(1-x)^6) + A(x^4*(1-x)^8) +...
-
/* Dirichlet convolution of mu(n) with Ternary numbers A001764: */
{a(n) = sumdiv(n, d, moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1))}
for(n=1, 30, print1(a(n), ", "))
-
/* G.f. satisfies: Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x-x^2. */
{a(n)=local(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(sum(n=1, #A, subst(x*Ser(A), x, (x-2*x^2+x^3 +x*O(x^#A))^n)))[#A]); A[n]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments