A034757 a(1)=1, a(n) = smallest odd number such that all sums of pairs of (not necessarily distinct) terms in the sequence are distinct.
1, 3, 7, 15, 25, 41, 61, 89, 131, 161, 193, 245, 295, 363, 407, 503, 579, 721, 801, 949, 1129, 1185, 1323, 1549, 1643, 1831, 1939, 2031, 2317, 2623, 2789, 3045, 3143, 3641, 3791, 4057, 4507, 4757, 5019, 5559, 5849, 6309, 6707, 7181, 7593
Offset: 1
Examples
5 is not in the sequence since 5+1 is already obtainable from 3+3, 9 is excluded since 1, 3 and 7 are in the sequence and would collide with 1+9
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a034757 = (subtract 1) . (* 2) . a005282 -- Reinhard Zumkeller, Dec 18 2012
-
Mathematica
seq2={1, 3}; Do[le=Length[seq2]; t=Last[seq2]+2; While[Length[Expand[(Plus @@ (x^seq2) + x^t)^2]] < Pochhammer[3, le]/le!, t=t+2]; AppendTo[seq2, t], {20}]; Print@seq2
-
Python
from itertools import count, islice def A034757_gen(): # generator of terms aset1, aset2, alist = set(), set(), [] for k in count(1,2): bset2 = {k<<1} if (k<<1) not in aset2: for d in aset1: if (m:=d+k) in aset2: break bset2.add(m) else: yield k alist.append(k) aset1.add(k) aset2.update(bset2) A034757_list = list(islice(A034757_gen(),30)) # Chai Wah Wu, Sep 05 2023
Formula
a(n) = 2*A005282(n)-1. (David Wasserman)
Extensions
An incorrect comment from Amarnath Murthy, also dated Apr 07 2004, has been deleted.
Offset fixed by Reinhard Zumkeller, Dec 18 2012
Comments