cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034822 Numbers k such that there are no palindromic squares of length k.

Original entry on oeis.org

2, 4, 8, 10, 14, 18, 20, 24, 30, 38, 40
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

All terms are even since (10^k+1)^2 is a palindrome of length 2*k+1. a(12) >= 46 if it exists (see A263618). - Chai Wah Wu, Jun 14 2024

Crossrefs

Programs

  • Mathematica
    A034822[n_] := Select[Range[Ceiling[Sqrt[10^(n - 1)]], Floor[Sqrt[10^n]]], #^2 == IntegerReverse[#^2] &];
    Select[Range[12], Length[A034822[#]] == 0 &] (* Robert Price, Apr 23 2019 *)
  • Python
    from sympy import integer_nthroot as iroot
    def ispal(n): s = str(n); return s == s[::-1]
    def ok(n):
      for r in range(iroot(10**(n-1), 2)[0] + 1, iroot(10**n, 2)[0]):
        if ispal(r*r): return False
      return True
    print([m for m in range(1, 16) if ok(m)]) # Michael S. Branicky, Feb 04 2021

Extensions

Two more terms from Patrick De Geest, Apr 01 2002