A034822 Numbers k such that there are no palindromic squares of length k.
2, 4, 8, 10, 14, 18, 20, 24, 30, 38, 40
Offset: 1
Links
- Patrick De Geest, Palindromic Squares in bases 2 to 17
- Eric Weisstein's World of Mathematics, Palindromic Number
Programs
-
Mathematica
A034822[n_] := Select[Range[Ceiling[Sqrt[10^(n - 1)]], Floor[Sqrt[10^n]]], #^2 == IntegerReverse[#^2] &]; Select[Range[12], Length[A034822[#]] == 0 &] (* Robert Price, Apr 23 2019 *)
-
Python
from sympy import integer_nthroot as iroot def ispal(n): s = str(n); return s == s[::-1] def ok(n): for r in range(iroot(10**(n-1), 2)[0] + 1, iroot(10**n, 2)[0]): if ispal(r*r): return False return True print([m for m in range(1, 16) if ok(m)]) # Michael S. Branicky, Feb 04 2021
Extensions
Two more terms from Patrick De Geest, Apr 01 2002
Comments