A034868 Left half of Pascal's triangle.
1, 1, 1, 2, 1, 3, 1, 4, 6, 1, 5, 10, 1, 6, 15, 20, 1, 7, 21, 35, 1, 8, 28, 56, 70, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 252, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 924, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 15
Offset: 0
Examples
1; 1; 1, 2; 1, 3; 1, 4, 6; 1, 5, 10; 1, 6, 15, 20; ...
Links
Crossrefs
Programs
-
Haskell
a034868 n k = a034868_tabf !! n !! k a034868_row n = a034868_tabf !! n a034868_tabf = map reverse a034869_tabf -- Reinhard Zumkeller, improved Dec 20 2015, Jul 27 2012
-
Mathematica
Flatten[ Table[ Binomial[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* Robert G. Wilson v, May 28 2005 *)
-
PARI
for(n=0, 14, for(k=0, floor(n/2), print1(binomial(n, k),", ");); print();) \\ Indranil Ghosh, Mar 31 2017
-
Python
import math from sympy import binomial for n in range(15): print([binomial(n, k) for k in range(int(math.floor(n/2)) + 1)]) # Indranil Ghosh, Mar 31 2017
-
Python
from itertools import count, islice def A034868_gen(): # generator of terms yield from (s:=(1,)) for i in count(0): yield from (s:=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ())) A034868_list = list(islice(A034868_gen(),30)) # Chai Wah Wu, Oct 17 2023
Formula
T(n,k) = A034869(n,floor(n/2)-k), k = 0..floor(n/2). - Reinhard Zumkeller, Jul 27 2012