A034869 Right half of Pascal's triangle.
1, 1, 2, 1, 3, 1, 6, 4, 1, 10, 5, 1, 20, 15, 6, 1, 35, 21, 7, 1, 70, 56, 28, 8, 1, 126, 84, 36, 9, 1, 252, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 924, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1
Offset: 0
Examples
The table starts: 1 1 2 1 3 1 6 4 1 ...
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a034869 n k = a034869_tabf !! n !! k a034869_row n = a034869_tabf !! n a034869_tabf = [1] : f 0 [1] where f 0 us'@(_:us) = ys : f 1 ys where ys = zipWith (+) us' (us ++ [0]) f 1 vs@(v:_) = ys : f 0 ys where ys = zipWith (+) (vs ++ [0]) ([v] ++ vs) -- Reinhard Zumkeller, improved Dec 21 2015, Jul 27 2012
-
Maple
for n from 0 to 60 do for j from n mod 2 to n by 2 do print( binomial(n,(n-j)/2) ); od; od; # R. J. Mathar, May 13 2006 # Second program: egf:= k-> BesselI(2*k, 2*x) + BesselI(2*k+1, 2*x): A034869:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): seq(print(seq(A034869(n, k), k=0..iquo(n, 2))), n=0..14); # Mélika Tebni, Sep 05 2024
-
Mathematica
Table[Binomial[n, k], {n, 0, 14}, {k, Ceiling[n/2], n}] // Flatten (* Michael De Vlieger, May 19 2016 *)
-
PARI
for(n=0, 14, for(k=ceil(n/2), n, print1(binomial(n, k),", ");); print();) \\ Indranil Ghosh, Mar 31 2017
-
Python
import math from sympy import binomial for n in range(15): print([binomial(n, k) for k in range(math.ceil(n/2), n + 1)]) # Indranil Ghosh, Mar 31 2017
Formula
E.g.f. of column k: BesselI(2*k,2*x) + BesselI(2*k+1,2*x). - Mélika Tebni, Sep 05 2024
Extensions
Keyword fixed and example added by Franklin T. Adams-Watters, May 27 2010
Comments