cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A111417 a(n) = A034869(n) - A008311(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 462, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1716, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6435, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24310, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2005

Keywords

Formula

a(n) = A001700(m) if n = (m+1)*(m+2) and a(n) = 0 otherwise.

A034868 Left half of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 6, 1, 5, 10, 1, 6, 15, 20, 1, 7, 21, 35, 1, 8, 28, 56, 70, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 252, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 924, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 15
Offset: 0

Views

Author

Keywords

Examples

			1;
1;
1, 2;
1, 3;
1, 4,  6;
1, 5, 10;
1, 6, 15, 20;
...
		

Crossrefs

Cf. A007318, A107430, A062344, A122366, A027306 (row sums).
Cf. A008619.
Cf. A225860.
Cf. A126257.
Cf. A034869 (right half), A014413, A014462, A265848.

Programs

  • Haskell
    a034868 n k = a034868_tabf !! n !! k
    a034868_row n = a034868_tabf !! n
    a034868_tabf = map reverse a034869_tabf
    -- Reinhard Zumkeller, improved Dec 20 2015, Jul 27 2012
    
  • Mathematica
    Flatten[ Table[ Binomial[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* Robert G. Wilson v, May 28 2005 *)
  • PARI
    for(n=0, 14, for(k=0, floor(n/2), print1(binomial(n, k),", ");); print();) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    import math
    from sympy import binomial
    for n in range(15):
        print([binomial(n, k) for k in range(int(math.floor(n/2)) + 1)]) # Indranil Ghosh, Mar 31 2017
    
  • Python
    from itertools import count, islice
    def A034868_gen(): # generator of terms
        yield from (s:=(1,))
        for i in count(0):
            yield from (s:=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ()))
    A034868_list = list(islice(A034868_gen(),30)) # Chai Wah Wu, Oct 17 2023

Formula

T(n,k) = A034869(n,floor(n/2)-k), k = 0..floor(n/2). - Reinhard Zumkeller, Jul 27 2012

A014413 Triangular array formed from elements to right of middle of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 10, 5, 1, 15, 6, 1, 35, 21, 7, 1, 56, 28, 8, 1, 126, 84, 36, 9, 1, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins as:
    1;
    1;
    3,   1;
    4,   1;
   10,   5,   1;
   15,   6,   1;
   35,  21,   7,  1;
   56,  28,   8,  1;
  126,  84,  36,  9,  1;
  210, 120,  45, 10,  1;
  462, 330, 165, 55, 11, 1;
  792, 495, 220, 66, 12, 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a014413 n k = a014413_tabf !! (n-1) !! (k-1)
    a014413_row n = a014413_tabf !! (n-1)
    a014413_tabf = [1] : f 1 [1] where
       f 0 us'@(_:us) = ys : f 1 ys where
                        ys = zipWith (+) us' (us ++ [0])
       f 1 vs@(v:_) = ys' : f 0 ys where
                      ys@(_:ys') = zipWith (+) (vs ++ [0]) ([v] ++ vs)
    -- Reinhard Zumkeller, Dec 24 2015
  • Mathematica
    Table[Binomial[n,k],{n,15},{k,Ceiling[(n+1)/2],n}]//Flatten  (* Stefano Spezia, Jan 16 2025 *)

Extensions

More terms from James Sellers

A008311 Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
Offset: 0

Views

Author

Keywords

Comments

This triangle is the right half of Pascal's triangle (A007318), but with each number along the center of Pascal's triangle (except the 1 at the top) divided by 2. - Benjamin Schak (schak(AT)math.upenn.edu), Dec 02 2005
For n>=2 found in A002378, a(n)=A034869(n)/2, for all others a(n)=A034869(n). - R. J. Mathar, May 13 2006

Examples

			Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From _Philippe Deléham_, Mar 09 2013: (Start)
cos(x)      = 1*cos(x),
2*cos(x)^2  = 1 + cos(2x),
4*cos(x)^3  = 3*cos(x) + cos(3x),
8*cos(x)^4  = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

Crossrefs

With zeros: A100257.

Programs

  • Maple
    printf("1,") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d,",binomial(n,(n-j)/2)/2) ; else printf("%d,",binomial(n,(n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
  • Mathematica
    row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
    Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)

Formula

Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013

Extensions

Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006

A265848 Pascal's triangle, right and left halves interchanged.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 1, 1, 4, 6, 10, 5, 1, 1, 5, 10, 15, 6, 1, 1, 6, 15, 20, 35, 21, 7, 1, 1, 7, 21, 35, 56, 28, 8, 1, 1, 8, 28, 56, 70, 126, 84, 36, 9, 1, 1, 9, 36, 84, 126, 210, 120, 45, 10, 1, 1, 10, 45, 120, 210, 252, 462, 330, 165, 55, 11, 1, 1, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 24 2015

Keywords

Comments

Concatenations of rows of A014413 and A034868.
Alternative mirrored variant: concatenation of A034869 and A014462.

Examples

			.   0:                                1
.   1:                              1   1
.   2:                            1   1   2
.   3:                          3   1   1   3
.   4:                        4   1   1   4   6
.   5:                     10   5   1   1   5   10
.   6:                   15   6   1   1   6   15  20
.   7:                 35   21  7   1   1   7   21   35
.   8:              56   28   8   1   1   8   28  56   70
.   9:           126   84   36  9   1   1   9   36   84   126
.  10:        210   120  45  10   1   1   10  45  120  210  252
.  11:     462   330  165   55  11  1   1   11  55  165   330  462
.  12:  792   495  220   66  12   1   1   12  66  220  495  792   924  .
		

Crossrefs

Cf. A014413, A014462, A034868, A034869, A007318, A001405, A037952, A000079 (row sums), A001142 (row products).

Programs

  • Haskell
    a265848 n k = a265848_tabl !! n !! k
    a265848_row n = a265848_tabl !! n
    a265848_tabl = zipWith (++) ([] : a014413_tabf) a034868_tabf
  • Mathematica
    row[n_] := Binomial[n, Join[Range[Floor[n/2] + 1, n], Range[0, Floor[n/2]]]]; Array[row, 12, 0] // Flatten (* Amiram Eldar, May 13 2025 *)

Formula

T(n,k) = A007318(n, (k + floor((n+2)/2)) mod (n+1)).
T(n,k) = if k <= [(n+1)/2] then A014413(n,k+1) else A034868(n,k-[(n+1)/2]).
T(n,0) = A037952(n) for n > 0.
T(n,n) = A001405(n).

A067802 Triangle read by rows: T(n, k) = binomial(2*n+1, n-k)^2*(2*k+1)/(2*n+1).

Original entry on oeis.org

1, 3, 1, 20, 15, 1, 175, 189, 35, 1, 1764, 2352, 720, 63, 1, 19404, 29700, 12375, 1925, 99, 1, 226512, 382239, 196625, 44044, 4212, 143, 1, 2760615, 5010005, 3006003, 869505, 124215, 8085, 195, 1, 34763300, 66745536, 45048640, 15767024, 2998800, 299200, 14144, 255, 1
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2002

Keywords

Examples

			Triangle starts:
  [0]      1
  [1]      3,      1
  [2]     20,     15,      1
  [3]    175,    189,     35,     1
  [4]   1764,   2352,    720,    63,    1
  [5]  19404,  29700,  12375,  1925,   99,   1
  [6] 226512, 382239, 196625, 44044, 4212, 143, 1
		

Crossrefs

First column is A000891.
Cf. A034869, A039599, A002894 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(2*n+1, n-k)^2*(2*k+1)/(2*n+1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Dec 07 2024

Formula

T(n, k) = A034869(2n+1, k) * A039599(n, k).

A111505 Right half of Pascal's triangle (A007318) with zeros.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 6, 4, 1, 0, 0, 0, 10, 5, 1, 0, 0, 0, 20, 15, 6, 1, 0, 0, 0, 0, 35, 21, 7, 1, 0, 0, 0, 0, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 462, 330, 165
Offset: 0

Views

Author

Philippe Deléham, Nov 16 2005

Keywords

Comments

A034869 is the version without zeros.

Examples

			Triangle begins:
1;
0, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 6, 4, 1;
0, 0, 0, 10, 5, 1;
0, 0, 0, 20, 15, 6, 1;
0, 0, 0, 0, 35, 21, 7, 1;
0, 0, 0, 0, 70, 56, 28, 8, 1;
0, 0, 0, 0, 0, 126, 84, 36, 9, 1;
0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1;
0, 0, 0, 0, 0, 0, 462, 330, 165, 55, 11, 1;
0, 0, 0, 0, 0, 0, 924, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 0, 0, 0, 1716, 1287, 715, 286, 78, 13, 1;
0, 0, 0, 0, 0, 0, 0, 3432, 3003, 2002, 1001, 364, 91, 14, 1;
		

Crossrefs

Formula

Sum_{n, n>=k} T(n, k) = A001700(k).
Sum_{k =0..2*n} T(2*n, k) = A032443(n).
Sum_{k=0..2*n+1} T(2*n+1, k) = 4^n = A000302(n).
Sum_{k=0..2*n} T(2*n, k)^2 = A036910(n).
Sum_{k=0..2*n+1} T(2*n+1, k)^2 = C(4*n+1, 2*n) = A002458(n) . Paul D. Hanna
Showing 1-7 of 7 results.