cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034959 Divide even numbers into groups with prime(n) elements and add together.

Original entry on oeis.org

2, 18, 70, 182, 484, 884, 1666, 2546, 4048, 6612, 8928, 13172, 17794, 22274, 28576, 37524, 48380, 57340, 71556, 85626, 98550, 118658, 138112, 163404, 196134, 224220, 249672, 281838, 310650, 347136, 420624, 467670, 525806, 571846, 655898
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Examples

			{0,2} #2 S=2;
{4,6,8} #3 S=18;
{10,12,14,16,18} #5 S=70;
{20,22,24,26,28,30,32} #7 S=182.
		

Crossrefs

Programs

  • Python
    from itertools import islice
    from sympy import nextprime
    def A034959_gen(): # generator of terms
        a, p = 0, 2
        while True:
            yield p*((a<<1)+p-1)
            a, p = a+p, nextprime(p)
    A034959_list = list(islice(A034959_gen(),20)) # Chai Wah Wu, Mar 22 2023

Formula

From Hieronymus Fischer, Sep 27 2012: (Start)
a(n) = 2*Sum_{k=(A007504(n-1)+1)..A007504(n)} (k-1), n > 1.
a(n) = (A007504(n) - A007504(n-1))*(A007504(n) + A007504(n-1) - 1), n > 1.
a(n) = 2*(A000217(A007504(n) - 1) - A000217(A007504(n-1) - 1)), n > 1.
If we define A007504(0):=0, then the formulas above are also true for n=1.
a(n) = 2*A034957(n).
a(n) = A034960(n) - A000040(n).
(End)