A034972 a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or "Zag" number (see A000182).
2, 8, 17, 29, 44, 63, 85, 110, 138, 170, 205, 243, 284, 329, 376, 427, 482, 539, 600, 664, 731, 802, 876, 953, 1033, 1116, 1203, 1293, 1386, 1483, 1583, 1685, 1792, 1901, 2014, 2130, 2249, 2371, 2497, 2626, 2758, 2893, 3032, 3174, 3319, 3467, 3619, 3774
Offset: 1
Examples
a(5) = floor(T(6)/T(5)) = floor(353792/7936) = floor(44.58) = 44.
References
- J. Peters and J. Stein, Matematische Tafeln. Revised Russian Edition in 1968, Moscow, Table 9a.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A000182.
Programs
-
Mathematica
Map[Floor[#2/#1] & @@ # &, Partition[Table[If[n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]], {n, 49}], 2, 1]] (* Michael De Vlieger, Jul 31 2017, after Michael Somos at A000182 *)
Formula
a(n) = floor( T(n+1)/T(n) ) where T(n) is n-th coefficient in expansion of tan(x).