cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035028 First differences of A002002.

Original entry on oeis.org

4, 20, 104, 552, 2972, 16172, 88720, 489872, 2719028, 15157188, 84799992, 475894200, 2677788492, 15102309468, 85347160608, 483183316512, 2739851422820, 15558315261812, 88462135512712, 503569008273992, 2869602773253884, 16368396446913420, 93449566652932784
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,20,104]; [n le 3 select I[n] else ( (7*n+1)*Self(n-1) - (7*n-15)*Self(n-2) + (n-3)*Self(n-3) )/(n+1): n in [1..30]]; // G. C. Greubel, Oct 19 2022
    
  • Mathematica
    Differences[CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x,0,30}], x]] (* Harvey P. Dale, Jun 04 2011 *)
    With[{P=LegendreP}, Table[(n*(n+2)*P[n+2,3] -(6*n^2+10*n+1)*P[n+1,3] +(n+1)*(5*n+ 3)*P[n,3])/(2*n*(n+1)), {n,30}]] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    def A001850(n): return gen_legendre_P(n,0,3)
    def A035028(n): return ((n+1)*(n+3)*A001850(n+3) - (6*n^2 +22*n +17)*A001850(n+2) + (n+2)*(5*n+8)*A001850(n+1))/(2*(n+1)*(n+2))
    [A035028(n) for n in range(40)] # G. C. Greubel, Oct 19 2022

Formula

a(n) = A049600(n, n-3).
D-finite with recurrence: (n+2)*a(n) - (7*n+8)*a(n-1) + (7*n-8)*a(n-2) - (n-2)*a(n-3) = 0. - R. J. Mathar, Jan 28 2020
a(n) = ((n+1)*(n+3)*A001850(n+3) - (6*n^2 +22*n +17)*A001850(n+2) + (n+2)*(5*n+8)*A001850(n+1))/(2*(n+1)*(n+2)), A001850(n) = LegrndreP(n, 3). - G. C. Greubel, Oct 19 2022

Extensions

More terms from Harvey P. Dale, Jun 04 2011