cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035086 Number of increasing rooted polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 19, 135, 1204, 12537, 150556, 2043930, 30969211, 517973148, 9478800604, 188381470095, 4040440921699, 93020386382742, 2287969523647171, 59877222907995675, 1661259526266784171, 48705364034046758493, 1504614657169716311674, 48848750173492332588525
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Nodes are numbered and the numbers increase as you move away from the root to any point on the same polygon.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301 and Chapter 5.
  • F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=1 then x else convert(series(Int(exp(A(n-1)^2/ (2-2*A(n-1))), x), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    max = 22; sy = Series[Integrate[E^(-(y^2/(2-2*y))), y], {y, 0, max}]; sx = Normal[ InverseSeries[sy, x]]; a[n_] := Coefficient[sx, x, n]*n!; Table[a[n], {n, 1, max }] (* Jean-François Alcover, Feb 24 2015 *)

Formula

E.g.f. satisfies A'(x) = exp(A(x)^2/(2-2*A(x))).