cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A035082 Number of rooted polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

0, 1, 0, 1, 1, 3, 5, 13, 27, 67, 157, 390, 963, 2437, 6186, 15908, 41127, 107148, 280569, 738675, 1953054, 5185364, 13816018, 36934431, 99030038, 266254593, 717652816, 1938831589, 5249221790, 14240130827, 38702218134, 105367669062
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures.
  • F. Harary and E. M. Palmer, Graphical Enumeration, p. 71

Crossrefs

Programs

  • PARI
    BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*Ser(EulerT(Vec(BIK(p)-1)-Vec(p)))); concat([0], Vec(p))} \\ Andrew Howroyd, Aug 30 2018

Formula

Shifts left under transform T where Ta = EULER(BIK(a)-a).

A035088 Number of labeled polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 3, 27, 240, 2985, 42840, 731745, 14243040, 313570845, 7683984000, 207685374435, 6135743053440, 196754537704725, 6805907485977600, 252620143716765825, 10015402456976716800, 422410127508300756825, 18884777200534941696000
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

A Husimi tree is a connected graph in which no line lies on more than one cycle [Harary, 1953]. - Jonathan Vos Post, Mar 12 2010

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301.
  • F. Harary and R. Z. Norman "The Dissimilarity Characteristic of Husimi Trees" Annals of Mathematics, 58 1953, pp. 134-141.
  • F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.
  • F. Harary and G. E. Uhlenbeck "On the Number of Husimi Trees" Proc. Nat. Acad. Sci. USA vol. 39. pp. 315-322, 1953.
  • F. Harary, G. Uhlenbeck (1953), "On the number of Husimi trees, I", Proceedings of the National Academy of Sciences 39: 315-322. - From Jonathan Vos Post, Mar 12 2010

Crossrefs

Programs

  • Mathematica
    max = 20; s = 1+InverseSeries[Series[E^(x^2/(2*(x-1)))*x, {x, 0, max}], x]; a[n_] := SeriesCoefficient[s, n]*(n-1)!; a[0]=1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 27 2016, after Vaclav Kotesovec at A035087 *)

Formula

a(n) = A035087(n)/n, n > 0.
Showing 1-2 of 2 results.