cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A189683 Irregular pairs (p,2k) ordered by increasing k.

Original entry on oeis.org

691, 12, 3617, 16, 43867, 18, 283, 20, 617, 20, 131, 22, 593, 22, 103, 24, 2294797, 24, 657931, 26, 9349, 28, 362903, 28, 1721, 30, 1001259881, 30, 37, 32, 683, 32, 305065927, 32, 151628697551, 34, 26315271553053477373, 36, 154210205991661, 38, 137616929, 40
Offset: 1

Views

Author

Jonathan Sondow, Apr 25 2011

Keywords

Comments

The subsequence of irregular primes p is A046753.

Examples

			The first few irregular pairs are (691,12), (3617,16), (43867,18), (283,20), (617,20), (131,22), (593,22), ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[p = Select[First /@ FactorInteger[Abs[Numerator[BernoulliB[n]]]], # >= n+3 &]; Transpose[{p, Table[n, {Length[p]}]}], {n, 2, 70, 2}]] (* T. D. Noe, Apr 25 2011 *)

A092681 Least number 2k such that p^2 divides the numerator of the Bernoulli number B(2k), where p is the n-th irregular prime, A000928(n).

Original entry on oeis.org

284, 914, 3292, 5768, 228, 12112, 11082, 6302, 11498, 40220, 34724, 51976, 1434, 74750, 67316, 21508, 63532, 39378, 67066, 64012, 91576, 137766, 137552, 105582, 158838, 147660, 175758, 194776, 173842, 102148, 132072, 107112, 127736, 29248
Offset: 1

Views

Author

T. D. Noe, Mar 03 2004

Keywords

Comments

The ordered-pair (p(n),a(n)), where p(n) is the n-th irregular prime, is called a second-order irregular pair. Some irregular primes, such as 157, have more than one pair. See A091887 for a count of the pairs for each irregular prime.

Crossrefs

A092291 Let p = n-th irregular prime, A000928(n). Then a(n) = smallest value of m such that numerator(Bernoulli(2*m)/(2*m)) / numerator(Bernoulli(2*m)/(2*m*(2*m-1))) equals p.

Original entry on oeis.org

574, 1269, 1910, 3384, 1185, 1376, 9611, 4789, 9670, 20946, 13019, 11247, 2689, 22708, 13355, 45251, 48407, 32653, 18761, 38706, 76391, 25563, 50310, 79023, 44948, 29864, 21716, 71441, 104339, 22993, 73572, 61549, 14714, 26122, 6227, 179369, 159687, 5862, 132157, 24925, 76023, 15346, 73479, 136956, 212240, 10587, 3801, 137040, 108520, 194171, 98550, 282532, 87272, 133081, 220187, 305002, 41764, 27268, 380180, 70921, 184940, 241076, 73858, 80108, 250927
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion of Roland Bacher, Feb 05 2004

Keywords

Comments

It was conjectured that a(n) = (1 + A000928(n) * (A035112(n) - 1))/2. However, Bernd Kellner's insightful paper shows that this formula first fails for the irregular prime 6449. - T. D. Noe, Feb 10 2004

Crossrefs

Term in A090495 corresponding to first occurrence of p in A090496.

Programs

  • Mathematica
    (* This program is not convenient for a large number of terms *) irregularPrimeQ[p_] := Module[{k = 1}, While[2*k <= p-3 && Mod[ Numerator[ BernoulliB[2*k]], p] != 0, k++]; 2*k <= p-3]; irregularPrime[1] = 37; irregularPrime[n_] := irregularPrime[n] = Module[{p}, For[p = NextPrime[ irregularPrime[n-1]], True, p = NextPrime[p], If[ irregularPrimeQ[p], Return[p]]]]; a[n_] := a[n] = For[m = 1, True, m++, If[ Numerator[BernoulliB[2*m]/(2*m)] / Numerator[ BernoulliB[2*m]/(2*m*(2*m-1))] == irregularPrime[n], Return[m]]]; Table[ Print[a[n]]; a[n], {n, 1, 15}] (* Jean-François Alcover, Sep 27 2013 *)

Extensions

Initial terms were computed by Roland Bacher, Feb 04 2004; further terms from Hans Havermann, Feb 05 2004 and T. D. Noe, Feb 06 2004
Offset modified by Jean-François Alcover, Sep 27 2013

A189684 Number of irregular pairs (p,2n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 1, 1, 2, 1, 4, 2, 3, 2, 4, 3, 3, 4, 3, 4, 2, 2, 4, 3, 2, 1, 2, 3, 5, 3, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 3, 4, 3, 5, 3, 1, 4, 1, 3, 3, 7, 3, 6, 5, 3, 4, 3, 7, 6, 3, 2, 6, 6, 6, 5, 6, 5, 7, 5, 4, 7, 8, 5, 3, 2, 7
Offset: 1

Views

Author

Jonathan Sondow, Apr 25 2011

Keywords

Comments

a(n) is the number of primes p >= 2n+3 that divide the numerator of the Bernoulli number B_{2n}.

Crossrefs

Programs

  • Mathematica
    Table[p = Select[First /@ FactorInteger[Abs[Numerator[BernoulliB[2n]]]], # >= 2*n+3 &]; Length[p], {n, 35}] (* T. D. Noe, Apr 25 2011 *)

A092682 Least number 2k such that p^3 divides the numerator of the Bernoulli number B(2k), where p is the n-th irregular prime, A000928(n).

Original entry on oeis.org

37580, 86464, 153640, 581468, 914250, 454892, 1510618, 3557642, 84974, 8905404, 11482532, 9629910, 1025814, 9252440, 6484016, 22003936, 17706562, 30054878, 18332698, 37340812, 39775150, 31082358, 5118308, 20315982, 57395934, 25079280
Offset: 1

Views

Author

T. D. Noe, Mar 03 2004

Keywords

Comments

The ordered-pair (p(n),a(n)), where p(n) is the n-th irregular prime, is called a third-order irregular pair. Some irregular primes, such as 157, have more than one pair. See A091887 for a count of the pairs for each irregular prime.

Crossrefs

A250215 Least k such that the n-th weak irregular prime (A250216(n)) divides A241601(k).

Original entry on oeis.org

11, 23, 32, 13, 15, 44, 7, 27, 29, 19, 63, 24, 22, 43, 129, 130, 62, 75, 133, 84, 211, 127, 164, 100, 84, 9, 20, 156, 88, 87, 280, 19, 71, 125, 163, 100, 200, 382, 126, 159, 240, 215, 196, 130, 94, 292, 141, 400, 86, 270, 222, 175, 389, 52, 45, 22, 592, 522, 20
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

A prime p can divide A241601(k) for more than one k; the first few examples are as follows:
p k
67 27, 58
101 63, 68
149 130, 147
157 62, 110
241 211, 239
263 100, 213
307 88, 91, 137
311 87, 193, 292
349 19, 257
353 71, 186, 300
etc.

Examples

			19 is the first weak irregular prime and divides A241601(11) = 50521, so a(1) = 11.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 18 2022

A308765 Irregular triangle T(n,k) read by rows with 1 <= k <= A091887 even indices 2i such that n-th irregular prime p (A000928) divides the numerator of the Bernoulli numbers B_{2i} (A000367) with 0 <= 2i <= p-3.

Original entry on oeis.org

32, 44, 58, 68, 24, 22, 130, 62, 110, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 300, 100, 174, 200, 382, 126, 240, 366, 196, 130, 94, 194, 292, 336, 338, 400, 86, 270, 486, 222, 52, 90, 92, 22, 592, 522, 20, 174, 338, 428, 80, 226, 236, 242, 554, 48, 224, 408, 502, 628, 32, 12, 200, 378, 290, 514, 260, 732, 220, 330, 628, 544, 744, 102, 66, 868, 162, 418, 520, 820, 156, 166
Offset: 1

Views

Author

Martin Renner, Jun 23 2019

Keywords

Comments

First index T(n,1) in row n is A035112(n).

Examples

			Triangle starts with
n = 1 => p = 37 divides the numerator of B_{32} = -7709321041217;
n = 2 => p = 59: B_{44};
n = 3 => p = 67: B_{58};
n = 4 => p = 101: B_{68};
n = 5 => p = 103: B_{24};
n = 6 => p = 131: B_{22};
n = 7 => p = 149: B_{130};
n = 8 => p = 157: B_{62}, B_{110};
n = 9 => p = 233: B_{84};
etc.
		

Crossrefs

Programs

  • Maple
    T:=[]:
    for j from 2 to 168 do
      p:=ithprime(j);
      B:=[]:
      for i from 1 to (p-3)/2 do
        if type(numer(bernoulli(2*i))/p,integer) then B:=[op(B),2*i]: fi:
      od:
      T:=[op(T),op(B)];
    od:
    op(T);
Showing 1-7 of 7 results.