A035140 Digits of juxtaposition of prime factors of composite n appear also in n.
25, 32, 121, 125, 128, 132, 135, 143, 175, 187, 243, 250, 256, 295, 312, 324, 341, 351, 375, 432, 451, 512, 625, 671, 679, 735, 781, 875, 928, 932, 1023, 1024, 1053, 1057, 1207, 1243, 1250, 1255, 1324, 1325, 1328, 1331, 1352, 1359, 1372, 1375, 1377, 1379
Offset: 1
Examples
295 = 5 * 59 since {5,9} is a subset of {2,5,9}.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
id[n_]:=Complement[Range[0,9],IntegerDigits[n]]; fac[n_]:=Flatten[IntegerDigits[Take[FactorInteger[n],All,1]]]; t={}; Do[If[!PrimeQ[n] && Intersection[id[n],fac[n]] == {}, AppendTo[t,n]], {n,2,1380}]; t (* Jayanta Basu, May 01 2013 *) Select[Range@10000, CompositeQ@# && SubsetQ[IntegerDigits@#,Flatten@IntegerDigits@(#[[1]] & /@ FactorInteger@#)] &] (* Hans Rudolf Widmer, May 11 2023 *)
-
Python
from sympy import factorint, isprime def ok(n): return n > 1 and not isprime(n) and set("".join(str(p) for p in factorint(n))) <= set(str(n)) print([k for k in range(1380) if ok(k)]) # Michael S. Branicky, May 11 2023
Extensions
Name clarified by Hans Rudolf Widmer, May 11 2023