cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035147 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -43.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Sep 07 2018: (Start)
Half of the number of integer solutions to x^2 + x*y + 11*y^2 = n.
Inverse Moebius transform of A011591. (End)

Crossrefs

Cf. A138811.
Moebius transform gives A011591.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-43, #] &]];
    Table[a[n], {n, 1, 100}] (* G. C. Greubel, Apr 25 2018 *)
  • PARI
    my(m=-43); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(-43, d)); \\ Amiram Eldar, Nov 18 2023

Formula

From Jianing Song, Sep 07 2018: (Start)
a(n) is multiplicative with a(43^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-43, p) = -1, a(p^e) = e + 1 if Kronecker(-43, p) = 1.
G.f.: Sum_{k>0} Kronecker(-43, k) * x^k / (1 - x^k).
A138811(n) = 2 * a(n) unless n = 0. (End)
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-43, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(43) = 0.479088... . (End)