cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A138811 Theta series of quadratic form x^2 + x*y + 11*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 4, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 4, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Mar 31 2008, Apr 05 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 4*q^11 + 4*q^13 + 2*q^16 + 4*q^17 + 4*q^23 + ...
		

Crossrefs

Cf. A035147.
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), this sequence (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(43), 1), 87); A[1] + 2*A[2] + 2*A[5] + 2*A[10] + 4*A[12] + 4*A[14] + 2*A[17] + 4*A[18]; /* Michael Somos, Sep 07 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -43, #] &]]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^43] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^43], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    Join[{1}, a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-43, #]&]];
    2 Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Sep 07 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-43, d))*2)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep([2, 1; 1, 22], n, 1)), n))};
    
  • PARI
    a(n)=if(n, sumdivmult(n,d,kronecker(-43,d))*2, 0) \\ Charles R Greathouse IV, Nov 23 2021
    

Formula

Expansion of theta_3(q) * theta_3(q^43) + theta_2(q) * theta_2(q^43) in powers of q.
Expansion of phi(q) * phi(q^43) + 4 * q^11 * psi(q^2) * psi(q^86) in powers of q where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 43 sequence [2, -2, -2, 2, -2, 2, -2, -2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, 0, ...].
a(n) = 2*b(n) where b() is multiplicative with b(43^e) = 1, b(p^e) = e + 1 if Kronecker(-43, p) = 1, b(p^e) = (1 + (-1)^e) / 2 otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (43 t)) = 43^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(4*n + 2) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n) = a(9*n) = a(n).
G.f.: Sum_{i,j in Z} x^(i*i + i*j + 11*j*j).
a(n) = 2 * A035147(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(43) = 0.958176... . - Amiram Eldar, Nov 21 2023

A341788 Norms of prime elements in Z[(1+sqrt(-43))/2], the ring of integers of Q(sqrt(-43)).

Original entry on oeis.org

4, 9, 11, 13, 17, 23, 25, 31, 41, 43, 47, 49, 53, 59, 67, 79, 83, 97, 101, 103, 107, 109, 127, 139, 167, 173, 181, 193, 197, 229, 239, 251, 269, 271, 281, 283, 293, 307, 311, 317, 337, 353, 359, 361, 367, 379, 397, 401, 431, 439, 443, 461, 479, 487, 509
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[(1+sqrt(-43))/2], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes such that (p,43) >= 0 and the squares of primes such that (p,43) = -1, where (p,43) is the Legendre symbol.
For primes p such that (p,43) = 1, there are two distinct ideals with norm p in Z[(1+sqrt(-43))/2], namely (x + y*(1+sqrt(-43))/2) and (x + y*(1-sqrt(-43))/2), where (x,y) is a solution to x^2 + x*y + 11*y^2 = p; for p = 43, (sqrt(-43)) is the unique ideal with norm p; for primes p with (p,43) = -1, (p) is the only ideal with norm p^2.

Examples

			norm((1 + sqrt(-43))/2) = norm((1 - sqrt(-43))/2) = 11;
norm((3 + sqrt(-43))/2) = norm((3 - sqrt(-43))/2) = 13;
norm((5 + sqrt(-43))/2) = norm((5 - sqrt(-43))/2) = 17;
norm((7 + sqrt(-43))/2) = norm((7 - sqrt(-43))/2) = 23;
...
norm((19 + sqrt(-43))/2) = norm((19 - sqrt(-43))/2) = 101.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A035147.
The total number of elements with norm n is given by A138811.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), this sequence (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341788(n) = my(disc=-43); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A318982 a(n) = Sum_{d|n} Kronecker(-67, d).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -67.
Half of the number of integer solutions to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)] counted up to association.
Inverse Moebius transform of A011596.

Examples

			G.f. = x + x^4 + x^9 + x^16 + 2*x^17 + 2*x^19 + 2*x^23 + x^25 + 2*x^29 + x^36 + 2*x^37 + 2*x^47 + x^49 + 2*x^59 + x^64 + x^67 + 2*x^68 + 2*x^71 + 2*x^73 + 2*x^76 + ...
		

Crossrefs

Cf. A318984.
Moebius transform gives A011596.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), this sequence (d=-67), A318983 (d=-163).

Programs

  • Mathematica
    a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
    Table[a[n], {n, 1, 110}] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = sumdiv(n, d, kronecker(-67, d))

Formula

a(n) is multiplicative with a(67^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, a(p^e) = e + 1 if Kronecker(-67, p) = 1.
G.f.: Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
A318984(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(67) = 0.383806... . - Amiram Eldar, Dec 16 2023

A318983 a(n) = Sum_{d|n} Kronecker(-163, d).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -163.
Half of the number of integer solutions to x^2 + x*y + 41*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-163)] counted up to association.
Inverse Moebius transform of A011615.

Examples

			G.f. = x + x^4 + x^9 + x^16 + x^25 + x^36 + 2*x^41 + 2*x^43 + 2*x^47 + x^49 + 2*x^53 + 2*x^61 + x^64 + 2*x^71 + ...
		

Crossrefs

Cf. A318985.
Moebius transform gives A011615.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), A318982 (d=-67), this sequence (d=-163).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-163, #] &]; Array[a, 100] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    a(n) = sumdiv(n, d, kronecker(-163, d))

Formula

a(n) is multiplicative with a(163^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-163, p) = -1, a(p^e) = e + 1 if Kronecker(-163, p) = 1.
G.f.: Sum_{k>0} Kronecker(-163, k) * x^k / (1 - x^k).
A318985(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(163) = 0.246068... . - Amiram Eldar, Dec 16 2023

A035233 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.

Original entry on oeis.org

1, 4, 9, 11, 13, 16, 17, 23, 25, 31, 36, 41, 43, 44, 47, 49, 52, 53, 59, 64, 67, 68, 79, 81, 83, 92, 97, 99, 100, 101, 103, 107, 109, 117, 121, 124, 127, 139, 143, 144, 153, 164, 167, 169, 172, 173, 176, 181, 187, 188, 193, 196, 197, 207, 208, 212, 221, 225
Offset: 1

Views

Author

Keywords

Comments

Also, positive numbers of the form x^2 + xy + 11y^2 (discriminant -43).

Crossrefs

Cf. A106891 (Primes of the form x^2 + xy + 11y^2).

Programs

  • PARI
    m=-43; select(x -> x, direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020

Extensions

More terms from Colin Barker, Jun 19 2014
Showing 1-6 of 6 results.