cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035154 a(n) = Sum_{d|n} Kronecker(-36, d).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 0, 1, 3, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 1, 1, 3, 2, 2, 2, 1, 0, 0, 0, 2, 0, 2, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 3, 2, 2, 0, 2, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + x^8 + x^9 + 2*x^10 + x^12 + 2*x^13 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, 1994, see p. 197, Entry 44.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := SeriesCoefficient[ (-2 + EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 4, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -36, d)))}; /* Michael Somos, Jul 30 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker( -36, p) * X))) [n])}; /* Michael Somos, Jul 30 2006 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n\6+1,(-1)^m*(x^(6*m+1)/(1-x^(6*m+1)+x*O(x^n)) + x^(6*m+5)/(1-x^(6*m+5)+x*O(x^n)))),n)} /* Paul D. Hanna */

Formula

Expansion of -1 + (theta_3(q)^2 + theta_3(q^3)^2) / 2 in powers of q. - Michael Somos, Jul 09 2013
From Michael Somos, Jul 30 2006: (Start)
Moebius transform is period 12 sequence [1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, ...].
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1(mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3(mod 4). (End)
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -36, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -36, p) * p^-s)). - Michael Somos, Jun 24 2011
a(2*n) = a(3*n) = a(n). a(2*n + 1) = A125079(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n).
2 * a(n) = A122857(n) unless n=0. - Michael Somos, Jul 09 2013
G.f.: Sum_{n>=0} (-1)^n*( x^(6*n+1)/(1-x^(6*n+1)) + x^(6*n+5)/(1-x^(6*n+5)) ). - Paul D. Hanna, Dec 14 2011
G.f.: x/(1-x) + x^5/(1-x^5) - x^7/(1-x^7) - x^11/(1-x^11) + x^13/(1-x^13) + x^17/(1-x^17) --++ ...
a(n) = A002654(n) + A002654(3*n). - Michael Somos, Jan 25 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Nov 17 2023