cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035162 Number of positive odd solutions to equation x^2 + 7y^2 = 8n.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 0, 2, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of solutions to the equation x + 7y = n in triangular numbers give the same sequence offset by 1. E.g., for n = 10, 3 + 7*1 = 10 + 7*0 = 10 so there are two solutions.

Examples

			For n=11, 5^2 + 7*3^2 = 9^2 + 7*1^2 = 8*11 so a(11)=2.
G.f. = q + q^2 + q^4 + q^7 + q^8 + q^9 + 2*q^11 + q^14 + q616 + q^18 + 2*q^22 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 303.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -28, d], { d, Divisors[ n]}]]; (* Michael Somos, Apr 24 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(7/2)] / 4, {q, 0, n}]; (* Michael Somos, Apr 24 2015 *)
    QP = QPochhammer; s = (QP[q^2]*QP[q^14])^2/(QP[q]*QP[q^7]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-28, d)))};
    
  • PARI
    {a(n) = if( n<0, 0, sum(i=1, sqrtint(8*n \ 7), (i%2) * issquare(8*n - 7*i^2)))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / (1 - X) / (1 - kronecker(-28, p) * X))[n])};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^14 + A)^2 / (eta(x + A) * eta(x^7 + A)), n))}; /* Michael Somos, Apr 24 2015 */

Formula

Expansion of q * psi(q) * psi(q^7) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 24 2015
Expansion of (eta(q^2) * eta(q^14))^2 / (eta(q) * eta(q^7)) in powers of q.
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -28.
G.f.: Sum_{K>0} (x^k - x^(3*k) - x^(5*k) + x^(9*k) + x^(11*k) - x^(13*k)) / (1 - x^(14*k)).
Multiplicative with a(2^e) = a(7^e) = 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1 + (-1)^e)/2 if p == 3, 5, 6 (mod 7). - Michael Somos, Sep 10 2005
Euler transform of period 14 sequence [ 1, -1, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -2, ...].
a(2*n) = a(7*n) = a(n). a(7*n + 3) = a(7*n + 5) = a(7*n + 6) = 0.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 - u2^3*u3 - 3*u1*u6^3 + 3*u2*u3^3 + 3*u2*u6*(u1*(u2-u1) + 3*u3*(u6-u3)). - Michael Somos, Sep 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w*(u-2*v) - v*(v-2*w)^2. - Michael Somos, Sep 10 2005
G.f.: Sum_{k>0} x^k * (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(6*k)) / (1 - x^(14*k)) = x * Product_{k>0} (1 - x^(2*k)) * (1 - x^(14*k)) / ((1 - x^(2*k-1)) * (1 - x^(14*k-7))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Oct 25 2022

Extensions

Entry revised by N. J. A. Sloane, Jul 31 2006