cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A128617 Expansion of q^2 * psi(q) * psi(q^15) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Mar 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 15y^2 = 8n. - Seiichi Manyama, May 21 2017

Examples

			G.f. = x^2 + x^3 + x^5 + x^8 + x^12 + 2*x^17 + x^18 + x^20 + 2*x^23 + x^27 + x^30 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 377, Entry 9(i).

Crossrefs

Cf. A035162.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -60, #] - KroneckerSymbol[ 20, #] KroneckerSymbol[ -3, n/#] &] / 2]; (* Michael Somos, Nov 12 2015 *)
    a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q^2] QPochhammer[ q^30])^2 / (QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d) - kronecker(20, d) * kronecker(-3, n/d) )/2)};
    
  • PARI
    {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};

Formula

Expansion of (eta(q^2) * eta(q^30))^2 / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, ...].
For n>0, n in A028955 equivalent to a(n) nonzero. If a(n) nonzero, a(n) = A082451(n) and a(n) = -A121362(n).
a(n)= (A082451(n) - A121362(n) )/2.
G.f.: x^2 * Product_{k>0} (1 - x^k) * (1 - x^(15*k)) * (1 + x^(2*k))^2 * (1 + x^(30*k))^2.

A033782 Product t2(q^d); d | 23, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 23y^2 = 8(n + 3). - Seiichi Manyama, May 21 2017

Crossrefs

Formula

Expansion of q^(-3) * (eta(q^2) * eta(q^46))^2 / (eta(q) * eta(q^23)) in powers of q. - Seiichi Manyama, May 21 2017

Extensions

More terms from Seiichi Manyama, May 21 2017

A033790 Product t2(q^d); d | 31, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 31y^2 = 8(n + 4). - Seiichi Manyama, May 21 2017

Crossrefs

Formula

Expansion of q^(-4) * (eta(q^2) * eta(q^62))^2 / (eta(q) * eta(q^31)) in powers of q. - Seiichi Manyama, May 21 2017

Extensions

More terms from Seiichi Manyama, May 21 2017

A110399 Expansion of (theta_3(q)*theta_3(q^7) - 1)/2 in powers of q.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 4, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 22 2005

Keywords

Comments

Half the number of integer solutions to x^2 + 7*y^2 = n. - Jianing Song, Nov 20 2019

Examples

			G.f. = x + x^4 + x^7 + 2*x^8 + x^9 + 2*x^11 + 3*x^16 + 2*x^23 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 302, Entry 17(ii).

Crossrefs

Cf. A033719 (number of integer solutions to x^2 + 7*y^2 = n).
Similar sequences: A096936, A113406, A138806.

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := e - 1; f[7, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    {a(n) = my(x); if( n<1, 0, x = valuation(n, 2); abs(x -1) * sumdiv(n/2^x, d, kronecker(-28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1,  p==7, 1, kronecker(-7, p)==-1, (1+(-1)^e)/2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x *O(x^n); polcoeff( (eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2 - 1)/2, n))};

Formula

a(n) is multiplicative with a(2^e) = |e-1|, a(7^e)= 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1+(-1)^e)/2 if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(-7, k) x^k/(1-(-x)^k).
G.f.: (theta_3(q)*theta_3(q^7) - 1)/2 where theta_3(q) = 1 + 2*(q + q^4 + q^9 + ...).
a(2*n + 1) = A035162(2*n + 1) = A035182(2*n + 1). A033719(n) = 2*a(n) if n > 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Nov 16 2023

A033766 Number of prime divisors (counted without multiplicity) of A138613(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 20, 29, 47, 78, 129, 230, 400, 710, 1221
Offset: 1

Views

Author

N. J. A. Sloane, Sep 20 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A035162.

Crossrefs

Programs

  • Mathematica
    PrimeNu[NestList[DivisorSigma[2,#]&,2,12]] (* Harvey P. Dale, Aug 19 2017 *)

Extensions

a(10)-a(12) from Donovan Johnson, Nov 17 2008
a(13)-a(16) from Daniel Suteu, Dec 11 2019

A033806 Product t2(q^d); d | 47, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 47y^2 = 8(n + 6). - Seiichi Manyama, May 27 2017

Crossrefs

Formula

Expansion of q^(-6) * (eta(q^2) * eta(q^94))^2 / (eta(q) * eta(q^47)) in powers of q. - Seiichi Manyama, May 27 2017

Extensions

More terms from Seiichi Manyama, May 27 2017

A121454 Expansion of q * psi(-q) * psi(-q^7) in powers of q where psi(q) is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 0, 0, 1, -1, 1, 0, 2, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, -2, 2, 0, 1, 0, 0, -1, 2, 0, 0, -1, 0, 0, 0, -1, 2, 0, 0, 0, 0, 0, 2, -2, 0, -2, 0, 0, 1, -1, 0, 0, 2, 0, 0, -1, 0, -2, 0, 0, 0, 0, 1, -1, 0, 0, 2, 0, 0, 0, 2, -1, 0, -2, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Jul 30 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

Cf. A035162.

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; Rest[CoefficientList[Series[eta[q] eta[q^4] eta[q^7] eta[q^28]/(eta[q^2] eta[q^14]), {q, 0, 100}], q]] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    {a(n)=if(n<1, 0, -(-1)^n*sumdiv(n,d,kronecker(-28,d)))}
    
  • PARI
    {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^4+A)*eta(x^7+A)*eta(x^28+A)/eta(x^2+A)/eta(x^14+A), n))}

Formula

Expansion of eta(q)*eta(q^4)*eta(q^7)*eta(q^28)/(eta(q^2)*eta(q^14)) in powers of q.
Euler transform of period 28 sequence [ -1, 0, -1, -1, -1, 0, -2, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -2, 0, -1, -1, -1, 0, -1, -2, ...].
Moebius transform is period 28 sequence [ 1, -2, -1, 0, -1, 2, 0, 0, 1, 2, 1, 0, -1, 0, 1, 0, -1, -2, -1, 0, 0, -2, 1, 0, 1, 2, -1, 0, ...].
Multiplicative with a(2^e) = -1 if e>0, a(7^e) = 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1+(-1)^e)/2 if p == 3, 5, 6 (mod 7).
G.f. A(x) satisfies 0=f(A(x), A(x^2), A(x^4)) where f(u, v, w)= u^4*w*v +2*u^3*w*v^2 +2*u^2*w^2*v^2 +4*u^3*w^3 +4*u^3*w^2*v +8*u*w^4*v +8*u*w^3*v^2 +8*u^2*w^3*v -u^2*v^4 -2*u^2*w*v^3 -4*w^2*v^4 -4*u*w^2*v^3.
G.f.: Sum_{k>0} (-1)^k *x^k*(1-x^(2*k))*(1-x^(4*k))*(1-x^(6*k))/(1-x^(14*k)) = x * Product_{k>0} (1-x^k)*(1+x^(2*k))*(1-x^(7*k))*(1+ x^(14*k)).
a(7*n) = a(n). a(7*n+3) = a(7*n+5) = a(7*n+6) = 0.
a(n) = (-1)^(n+1)*A035162(n).

A133827 Number of solutions to x + 7 * y = 2 * n in triangular numbers.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 25 2007, Oct 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is called omega(q) by Berkovich and Yesilyurt.

Examples

			G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^11 + x^12 + 2*x^14 + 2*x^18 + 2*x^21 + x^24 + ...
G.f. = q + q^7 + q^9 + 2*q^11 + 2*q^23 + q^25 + 2*q^29 + 2*q^37 + 2*q^43 + q^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[#, 2] KroneckerSymbol[ -28, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(7/2)], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, (d%2) * kronecker( -28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if(p == 2, 0, p == 7, 1, 1 == kronecker( -7, p), e + 1, 1-e%2)))};

Formula

Expansion of psi(x^4) * phi(x^14) + x^3 * psi(x^28) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(7^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), b(p^e) = e + 1 if p == 1, 2, 4 (mod 7).
a(7*n + 1) = a(7*n + 2) = a(7*n + 6) = 0. a(7*n + 3) = a(n).
Expansion of psi(q) * psi(q^7) - q * psi(q^2) * psi(q^14) = (psi(q) * psi(q^7) + psi(-q) * psi(-q^7)) / 2 in powers of q^2 where psi() is a Ramanujan theta function.
a(n) = A035162(2*n + 1) = A035182(2*n + 1) = A110399(2*n + 1) = A121454(2*n + 1).
2 * a(n) = A002652(2*n + 1) = A033719(2*n + 1). - Michael Somos, Dec 30 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Dec 29 2023

A286813 Number of positive odd solutions to equation x^2 + 8*y^2 = 8*n + 9.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Related to the number of positive odd solutions to equation x^2 + k*y^2 = 8*n + k + 1: A008441 (k=1), A033761 (k=2), A033762 (k=3), A053692 (k=4), A033764 (k=5), A259896 (k=6), A035162 (k=7), this sequence (k=8).

Formula

Expansion of q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8)) in powers of q.
Euler Transform of -(-2*x^8-x^7-1)/(x^9+x^8+x+1) (o.g.f.). - Simon Plouffe, Jun 23 2018

A287619 Number of positive odd solutions to equation x^2 + 39y^2 = 8*(n + 5).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Number of positive odd solutions to equation x^2 + (8*k - 1)*y^2 = 8*(n + k): A033782 (k=3), A033790 (k=4), this sequence (k=5), A033806 (k=6).

Formula

Expansion of q^(-5) * (eta(q^2) * eta(q^78))^2 / (eta(q) * eta(q^39)) in powers of q.
Showing 1-10 of 10 results.