cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A112609 Number of representations of n as a sum of three times a triangular number and four times a triangular number.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(30) = 2 since we can write 30 = 3*10 + 4*0 = 3*6 + 4*3
q^7 + q^31 + q^39 + q^63 + q^79 + q^103 + q^111 + q^127 + q^151 + ...
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

A131962(n) = a(3*n). A112607(n) = a(3*n+1). A128617(n) = a(4*n+3).
A112605(2*n+1) = 2 * a(n). A112607(3*n+1) = a(n). A033762(4*n+3) = 2 * a(n). A112604(6*n+5) = 2 * a(n). A002324(8*n+7) = a(n). A123484(24*n+21) = 2 * a(n).

Programs

  • Mathematica
    A112609[n_] := SeriesCoefficient[(QPochhammer[q^6]*QPochhammer[q^8])^2/
    (QPochhammer[q^3]*QPochhammer[q^4]), {q,0,n}]; Table[A112609[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n=8*n+7; sumdiv(n, d, kronecker(-3, d))/2)} /* Michael Somos, Mar 10 2008 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^8 + A))^2 / (eta(x^3 + A) * eta(x^4 + A)), n))} /* Michael Somos, Mar 10 2008 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+7) - d_{2, 3}(8n+7) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of phi(q^3) * psi(q^4) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 10 2008
Expansion of q^(-7/8) * (eta(q^6) * eta(q^8))^2 / (eta(q^3) * eta(q^4)) in powers of q. - Michael Somos, Mar 10 2008
Euler transform of period 24 sequence [ 0, 0, 1, 1, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, 1, 0, 0, -2, ...]. - Michael Somos, Mar 10 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138270.
a(3*n+2) = 0.

A033782 Product t2(q^d); d | 23, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 23y^2 = 8(n + 3). - Seiichi Manyama, May 21 2017

Crossrefs

Formula

Expansion of q^(-3) * (eta(q^2) * eta(q^46))^2 / (eta(q) * eta(q^23)) in powers of q. - Seiichi Manyama, May 21 2017

Extensions

More terms from Seiichi Manyama, May 21 2017

A033790 Product t2(q^d); d | 31, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 31y^2 = 8(n + 4). - Seiichi Manyama, May 21 2017

Crossrefs

Formula

Expansion of q^(-4) * (eta(q^2) * eta(q^62))^2 / (eta(q) * eta(q^31)) in powers of q. - Seiichi Manyama, May 21 2017

Extensions

More terms from Seiichi Manyama, May 21 2017

A082451 Sum over divisors d of n of Kronecker symbol (-60, d).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 2, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 2, 2, 1, 1, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 1, 1, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Apr 25 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. =  q + q^2 + q^3 + q^4 + q^5 + q^6 + q^8 + q^9 + q^10 + q^12 + q^15 + q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[n, KroneckerSymbol[-60, #] &]]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 7, 1, KroneckerSymbol[-60, #] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[n])]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^5] QPochhammer[ -q, q] QPochhammer[ -q^15, q^15], {q, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d)))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker(-60, p)*X))[n]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A) / (eta(x + A) * eta(x^15 + A)), n))};

Formula

Expansion of q * f(-q^3) * f(-q^5) / (chi(-q) * chi(-q^15)) in powers of q where f(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30) / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [ 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
G.f.: x * Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(5*k)) * (1 + x^(15*k)).
a(n) = A128616(n) + A128617(n). - Michael Somos, Nov 15 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - Amiram Eldar, Nov 16 2023

A033806 Product t2(q^d); d | 47, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 47y^2 = 8(n + 6). - Seiichi Manyama, May 27 2017

Crossrefs

Formula

Expansion of q^(-6) * (eta(q^2) * eta(q^94))^2 / (eta(q) * eta(q^47)) in powers of q. - Seiichi Manyama, May 27 2017

Extensions

More terms from Seiichi Manyama, May 27 2017

A287619 Number of positive odd solutions to equation x^2 + 39y^2 = 8*(n + 5).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Number of positive odd solutions to equation x^2 + (8*k - 1)*y^2 = 8*(n + k): A033782 (k=3), A033790 (k=4), this sequence (k=5), A033806 (k=6).

Formula

Expansion of q^(-5) * (eta(q^2) * eta(q^78))^2 / (eta(q) * eta(q^39)) in powers of q.
Showing 1-6 of 6 results.