cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035163 Composite numbers k, not a power of 2, such that the E(k) == 1 (mod k), where E(k) is the k-th Euler number (A000364).

Original entry on oeis.org

15, 91, 289, 319, 435, 561, 692, 703, 1016, 1105, 1369, 1495, 1729, 1885, 1891, 2105, 2465, 2701, 2755, 2821, 3367, 4371, 5551, 6409, 6601, 7456, 8224, 8569, 8695, 8911, 9088, 10585, 10621, 11305, 11849, 12121, 12403, 13981, 14065, 15051, 15841, 16471, 17104
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], CompositeQ[#] && #/2^IntegerExponent[#, 2] > 1 && Divisible[Abs[EulerE[2*#]] - 1, #] &] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    a000364(n)=subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1);
    lista(nn) = {forcomposite(n=1, nn, if ( n != 2^valuation(n, 2), if (Mod(a000364(n), n) == 1, print1(n, ", "));););} \\ Michel Marcus, Apr 18 2015

Extensions

More terms from Hans Havermann, Apr 07 2003
a(23)-a(43) from Amiram Eldar, Nov 26 2020