A035163 Composite numbers k, not a power of 2, such that the E(k) == 1 (mod k), where E(k) is the k-th Euler number (A000364).
15, 91, 289, 319, 435, 561, 692, 703, 1016, 1105, 1369, 1495, 1729, 1885, 1891, 2105, 2465, 2701, 2755, 2821, 3367, 4371, 5551, 6409, 6601, 7456, 8224, 8569, 8695, 8911, 9088, 10585, 10621, 11305, 11849, 12121, 12403, 13981, 14065, 15051, 15841, 16471, 17104
Offset: 1
Keywords
Programs
-
Mathematica
Select[Range[1000], CompositeQ[#] && #/2^IntegerExponent[#, 2] > 1 && Divisible[Abs[EulerE[2*#]] - 1, #] &] (* Amiram Eldar, Nov 26 2020 *)
-
PARI
a000364(n)=subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1); lista(nn) = {forcomposite(n=1, nn, if ( n != 2^valuation(n, 2), if (Mod(a000364(n), n) == 1, print1(n, ", "));););} \\ Michel Marcus, Apr 18 2015
Extensions
More terms from Hans Havermann, Apr 07 2003
a(23)-a(43) from Amiram Eldar, Nov 26 2020