A035232 Number of substrings of n which are primes (counted with multiplicity).
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 0, 1, 1, 2, 0, 1, 0, 2, 0, 0, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 2, 0, 1
Offset: 1
Examples
The primes occurring as substrings of 37 are 3, 7, 37, so a(37) = 3. a(22) = 2, since the prime 2 occurs twice as a substring.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> (s-> nops(select(t -> t[1]<>"0" and isprime(parse(t)), [seq(seq(s[i..j], i=1..j), j=1..length(s))])))(""||n): seq(a(n), n=1..100); # Alois P. Heinz, Aug 07 2022
-
Mathematica
a[n_] := Block[{s = IntegerDigits[n], c = 0, d = {}}, l = Length[s]; t = Flatten[ Table[ Take[s, {i, j}], {i, 1, l}, {j, i, l}], 1]; k = l(l + 1)/2; While[k > 0, If[ t[[k]][[1]] != 0, d = Append[d, FromDigits[ t[[k]] ]]]; k-- ]; Count[ PrimeQ[d], True]]; Table[ a[n], {n, 1, 105}]
-
Python
from sympy import isprime def a(n): s = str(n) ss = (s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1)) return sum(1 for w in ss if w[0] != "0" and isprime(int(w))) print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Aug 07 2022
Formula
Trivial upper bound: a(n) <= binomial(floor(log(n)/log(10)+2), 2) ~ k*log^2 n with k = 0.09430584850580... = 1/log(10)^2/2. - Charles R Greathouse IV, Nov 15 2022
Extensions
Edited by Robert G. Wilson v, Feb 24 2003
Comments