cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385067 G.f.: Sum_{k>=0} x^k * Product_{j=1..3*k} (1 + x^j).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 11, 14, 18, 23, 30, 38, 47, 58, 71, 87, 106, 128, 154, 185, 221, 263, 313, 370, 437, 514, 603, 705, 822, 958, 1112, 1289, 1491, 1721, 1982, 2279, 2617, 2999, 3432, 3921, 4473, 5095, 5795, 6583, 7468, 8461, 9574, 10820, 12214, 13772, 15512, 17453
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^k*Product[1 + x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Expand[p*(1 + x^(3*k))*(1 + x^(3*k - 1))*(1 + x^(3*k - 2))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p*x^k;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ Gamma(1/3) * exp(Pi*sqrt(n/3)) / (2^(4/3) * 3^(11/12) * Pi^(2/3) * n^(5/12)).

A363066 Number of partitions p of n such that (1/3)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 16, 20, 27, 33, 45, 55, 72, 89, 116, 142, 181, 222, 281, 343, 429, 522, 649, 786, 967, 1168, 1429, 1719, 2088, 2504, 3026, 3615, 4345, 5174, 6192, 7349, 8755, 10360, 12297, 14507, 17154, 20182, 23788, 27910, 32790, 38374, 44955, 52480, 61307, 71402
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(4*k)/Product[1 - x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(3*k))*(1-x^(3*k-1))*(1-x^(3*k-2))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(4*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]/3]&)],{n,60}]] (* _Harvey P. Dale, Jun 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, #partitions(n-4*k, 3*k));

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ Gamma(1/3) * Pi^(1/3) * exp(Pi*sqrt(2*n/3)) / (2^(13/6) * 3^(8/3) * n^(7/6)). - Vaclav Kotesovec, Jun 19 2025

A385089 G.f.: Sum_{k>=0} x^k * Product_{j=1..3*k} (1 + x^j)/(1 - x^j).

Original entry on oeis.org

1, 1, 3, 7, 15, 27, 47, 79, 127, 199, 307, 465, 695, 1025, 1493, 2151, 3069, 4337, 6075, 8441, 11639, 15933, 21667, 29281, 39337, 52555, 69849, 92375, 121595, 159347, 207939, 270259, 349911, 451377, 580223, 743341, 949241, 1208415, 1533763, 1941111, 2449841, 3083637
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k*Product[(1+x^j)/(1-x^j), {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 50; p = 1; q = 1; s = 1; Do[p = Expand[p*(1 - x^(3*k))*(1 - x^(3*k - 1))*(1 - x^(3*k - 2))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; q = Expand[q*(1 + x^(3*k))*(1 + x^(3*k - 1))*(1 + x^(3*k - 2))]; q = Take[q, Min[nmax + 1, Exponent[q, x] + 1, Length[q]]]; s += x^k*q/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ Gamma(1/3) * exp(Pi*sqrt(n)) / (3 * 2^(8/3) * Pi^(2/3) * n^(2/3)).
Showing 1-3 of 3 results.