cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A363068 Number of partitions p of n such that (1/5)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 59, 73, 94, 117, 148, 181, 228, 277, 344, 418, 514, 621, 762, 917, 1116, 1342, 1624, 1945, 2348, 2803, 3366, 4012, 4798, 5700, 6798, 8052, 9565, 11305, 13383, 15771, 18618, 21880, 25745, 30187, 35414, 41414, 48461, 56531, 65967
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Comments

In general, for m>=1, if g.f. = Sum_{k>=0} x^((m+1)*k) / Product_{j=1..m*k} (1 - x^j), then a(n) ~ Gamma(1/m) * Pi^(1/m) * exp(Pi*sqrt(2*n/3)) / (m^2 * 2^((4*m+1)/(2*m)) * 3^((m+1)/(2*m)) * n^(1 + 1/(2*m))). - Vaclav Kotesovec, Jun 19 2025

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(6*k)/Product[1 - x^j, {j, 1, 5*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(5*k))*(1-x^(5*k-1))*(1-x^(5*k-2))*(1-x^(5*k-3))*(1-x^(5*k-4))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(6*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    a(n) = sum(k=0, n\6, #partitions(n-6*k, 5*k));

Formula

G.f.: Sum_{k>=0} x^(6*k)/Product_{j=1..5*k} (1-x^j).
a(n) ~ Gamma(1/5) * Pi^(1/5) * exp(Pi*sqrt(2*n/3)) / (25 * 2^(21/10) * 3^(3/5) * n^(11/10)). - Vaclav Kotesovec, Jun 19 2025

A363067 Number of partitions p of n such that (1/4)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 39, 51, 64, 81, 102, 128, 159, 198, 245, 304, 374, 460, 563, 689, 841, 1023, 1242, 1505, 1819, 2195, 2642, 3173, 3804, 4551, 5435, 6477, 7707, 9151, 10850, 12843, 15175, 17902, 21089, 24802, 29132, 34164, 40012, 46796, 54663, 63766
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(5*k)/Product[1 - x^j, {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(4*k))*(1-x^(4*k-1))*(1-x^(4*k-2))*(1-x^(4*k-3))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(5*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, #partitions(n-5*k, 4*k));

Formula

G.f.: Sum_{k>=0} x^(5*k)/Product_{j=1..4*k} (1-x^j).
a(n) ~ Gamma(1/4) * Pi^(1/4) * exp(Pi*sqrt(2*n/3)) / (2^(49/8) * 3^(5/8) * n^(9/8)). - Vaclav Kotesovec, Jun 19 2025

A035295 Expansion of sum ( q^n / product( 1-q^k, k=1..3*n), n=0..inf ).

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 26, 38, 54, 77, 107, 148, 201, 272, 363, 483, 635, 832, 1081, 1399, 1796, 2299, 2924, 3707, 4673, 5874, 7348, 9166, 11384, 14102, 17404, 21425, 26285, 32172, 39259, 47799, 58036, 70318, 84985, 102507, 123354, 148163, 177582, 212464, 253692, 302411
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 16 2025 *)
    nmax = 50; p=1; s=1; Do[p=Expand[p*(1-x^(3*k))*(1-x^(3*k-1))*(1-x^(3*k-2))];p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]];s+=x^k/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2025 *)

Formula

a(n) ~ Gamma(1/3) * exp(Pi*sqrt(2*n/3)) / (2^(5/3) * 3^(7/6) * Pi^(2/3) * n^(2/3)). - Vaclav Kotesovec, Jun 16 2025

Extensions

More terms from Vaclav Kotesovec, Jun 16 2025

A238590 Number of partitions p of n such that 3*min(p) is a part of p.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 32, 46, 61, 86, 110, 149, 192, 257, 326, 425, 538, 694, 871, 1107, 1381, 1740, 2154, 2689, 3313, 4103, 5024, 6176, 7529, 9201, 11157, 13554, 16365, 19784, 23782, 28610, 34260, 41039, 48958, 58405, 69431, 82525, 97775
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-4*i, i), i=1..n/4):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Min[p]]], {n, 50}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n-4i, i], {i, 1, n/4}];
    Array[a, 60] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 73*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (2^(5/2) * n^(3/2)). (End)
Showing 1-4 of 4 results.