A035296 Expansion of sum ( q^n / product( 1-q^k, k=1..4*n), n=0..inf ).
1, 1, 2, 4, 7, 12, 18, 28, 41, 60, 85, 119, 164, 225, 304, 408, 542, 716, 938, 1222, 1582, 2037, 2609, 3326, 4220, 5332, 6708, 8407, 10497, 13061, 16197, 20020, 24671, 30313, 37141, 45383, 55311, 67242, 81552, 98678, 119135, 143522, 172545, 207018, 247899, 296294, 353492
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2025 *) nmax = 50; p=1; s=1; Do[p=Expand[p*(1-x^(4*k))*(1-x^(4*k-1))*(1-x^(4*k-2))*(1-x^(4*k-3))];p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]];s+=x^k/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2025 *)
Formula
a(n) ~ Gamma(1/4) * exp(Pi*sqrt(2*n/3)) / (2^(29/8) * 3^(1/8) * Pi^(3/4) * n^(5/8)). - Vaclav Kotesovec, Jun 17 2025
Extensions
More terms from Vaclav Kotesovec, Jun 16 2025