A035324 A convolution triangle of numbers, generalizing Pascal's triangle A007318.
1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450
Offset: 1
Examples
Triangle begins: 1; 3, 1; 10, 6, 1; 35, 29, 9, 1; 126, 130, 57, 12, 1; 462, 562, 312, 94, 15, 1; Triangle (0, 3, 1/3, 5/3, 3/5, ...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...).
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Haskell
a035324 n k = a035324_tabl !! (n-1) !! (k-1) a035324_row n = a035324_tabl !! (n-1) a035324_tabl = map snd $ iterate f (1, [1]) where f (i, xs) = (i + 1, map (`div` (i + 1)) $ zipWith (+) ((map (* 2) $ zipWith (*) [2 * i + 1 ..] xs) ++ [0]) ([0] ++ zipWith (*) [2 ..] xs)) -- Reinhard Zumkeller, Jun 30 2013
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *)
-
Sage
@cached_function def T(n, k): if n == 0: return n^k return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1)) A035324 = lambda n,k: T(k, n) for n in (1..8): print([A035324(n, k) for k in (1..n)]) # Peter Luschny, Aug 16 2016
Formula
a(n+1, m) = 2*(2*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((x*c(x)/sqrt(1-4*x))^m)/x, where c(x) = g.f. for Catalan numbers A000108.
a(n, m) =: s2(3; n, m).
With offset 0 (0 <= k <= n), T(n,k) = Sum_{j>=0} A039598(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n+1,n) = 3*n = A008585(n).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,m) = Sum_{k=m..n} k*binomial(k-1,k-m)*2^(k-m)*binomial(2*n-k-1,n-k)/n. - Vladimir Kruchinin, Aug 07 2013
Comments