cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035324 A convolution triangle of numbers, generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450
Offset: 1

Views

Author

Keywords

Comments

Replacing each '2' in the recurrence by '1' produces Pascal's triangle A007318(n-1,m-1). The columns appear as A001700, A008549, A045720, A045894, A035330, ...
Triangle T(n,k), 1 <= k <= n, given by (0, 3/1, 1/3, 5/3, 3/5, 7/5, 5/7, 9/7, 7/9, 11/9, 9/11, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 28 2012
Riordan array (1, c(x)/sqrt(1-4x)) where c(x) = g.f. for Catalan numbers A000108, first column (k = 0) omitted. - Philippe Deléham, Jan 28 2012

Examples

			Triangle begins:
    1;
    3,   1;
   10,   6,   1;
   35,  29,   9,   1;
  126, 130,  57,  12,   1;
  462, 562, 312,  94,  15,   1;
Triangle (0, 3, 1/3, 5/3, 3/5, ...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...).
		

Crossrefs

Row sums: A049027(n), n >= 1.
Alternating row sums give A000108 (Catalan numbers).
If offset 0 (n >= m >= 0): convolution triangle based on A001700 (central binomial coeffs. of odd order).

Programs

  • Haskell
    a035324 n k = a035324_tabl !! (n-1) !! (k-1)
    a035324_row n = a035324_tabl !! (n-1)
    a035324_tabl = map snd $ iterate f (1, [1]) where
       f (i, xs)  = (i + 1, map (`div` (i + 1)) $
          zipWith (+) ((map (* 2) $ zipWith (*) [2 * i + 1 ..] xs) ++ [0])
                      ([0] ++ zipWith (*) [2 ..] xs))
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *)
  • Sage
    @cached_function
    def T(n, k):
        if n == 0: return n^k
        return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1))
    A035324 = lambda n,k: T(k, n)
    for n in (1..8): print([A035324(n, k) for k in (1..n)]) # Peter Luschny, Aug 16 2016

Formula

a(n+1, m) = 2*(2*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((x*c(x)/sqrt(1-4*x))^m)/x, where c(x) = g.f. for Catalan numbers A000108.
a(n, m) =: s2(3; n, m).
With offset 0 (0 <= k <= n), T(n,k) = Sum_{j>=0} A039598(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n+1,n) = 3*n = A008585(n).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,m) = Sum_{k=m..n} k*binomial(k-1,k-m)*2^(k-m)*binomial(2*n-k-1,n-k)/n. - Vladimir Kruchinin, Aug 07 2013