cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035360 Number of partitions of n into parts 3k or 3k+1.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 7, 8, 11, 15, 17, 23, 30, 35, 44, 57, 66, 82, 103, 121, 146, 181, 211, 253, 308, 360, 425, 513, 596, 700, 834, 969, 1127, 1333, 1541, 1786, 2093, 2415, 2781, 3241, 3723, 4273, 4946, 5669, 6476, 7461, 8519, 9705, 11123, 12669, 14379, 16418
Offset: 0

Views

Author

Keywords

Comments

Euler transform of period 3 sequence [ 1, 0, 1, ...]. - Kevin T. Acres, Apr 28 2018

Examples

			1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 8*x^8 + 11*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(3*k))*(1 - x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 23 2015 *)
    nmax = 52; kmax = nmax/3;
    s = Flatten[{Range[0, kmax]*3}~Join~{Range[0, kmax]*3 + 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)

Formula

a(n) ~ Gamma(1/3) * exp(2*Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(2/3) * n^(11/12)). - Vaclav Kotesovec, Aug 23 2015