cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A032766 Numbers that are congruent to 0 or 1 (mod 3).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Omitting the initial 0, a(n) is the number of 1's in the n-th row of the triangle in A118111. - Hans Havermann, May 26 2002
Binomial transform is A053220. - Michael Somos, Jul 10 2003
Smallest number of different people in a set of n-1 photographs that satisfies the following conditions: In each photograph there are 3 women, the woman in the middle is the mother of the person on her left and is a sister of the person on her right and the women in the middle of the photographs are all different. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Partial sums of A000034. - Richard Choulet, Jan 28 2010
Starting with 1 = row sums of triangle A171370. - Gary W. Adamson, Feb 15 2010
a(n) is the set of values for m in which 6k + m can be a perfect square (quadratic residues of 6 including trivial case of 0). - Gary Detlefs, Mar 19 2010
For n >= 2, a(n) is the smallest number with n as an anti-divisor. - Franklin T. Adams-Watters, Oct 28 2011
Sequence is also the maximum number of floors with 3 elevators and n stops in a "Convenient Building". See A196592 and Erich Friedman link below. - Robert Price, May 30 2013
a(n) is also the total number of coins left after packing 4-curves patterns (4c2) into a fountain of coins base n. The total number of 4c2 is A002620 and voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 26 2013
Number of partitions of 6n into two even parts. - Wesley Ivan Hurt, Nov 15 2014
Number of partitions of 3n into exactly 2 parts. - Colin Barker, Mar 23 2015
Nonnegative m such that floor(2*m/3) = 2*floor(m/3). - Bruno Berselli, Dec 09 2015
For n >= 3, also the independence number of the n-web graph. - Eric W. Weisstein, Dec 31 2015
Equivalently, nonnegative numbers m for which m*(m+2)/3 and m*(m+5)/6 are integers. - Bruno Berselli, Jul 18 2016
Also the clique covering number of the n-Andrásfai graph for n > 0. - Eric W. Weisstein, Mar 26 2018
Maximum sum of degeneracies over all decompositions of the complete graph of order n+1 into three factors. The extremal decompositions are characterized in the Bickle link below. - Allan Bickle, Dec 21 2021
Also the Hadwiger number of the n-cocktail party graph. - Eric W. Weisstein, Apr 30 2022
The number of integer rectangles with a side of length n+1 and the property: the bisectors of the angles form a square within its limits. - Alexander M. Domashenko, Oct 17 2024
The maximum possible number of 5-cycles in an outerplanar graph on n+4 vertices. - Stephen Bartell, Jul 10 2025

Crossrefs

Cf. A006578 (partial sums), A000034 (first differences), A016789 (complement).
Essentially the same: A049624.
Column 1 (the second leftmost) of triangular table A026374.
Column 1 (the leftmost) of square array A191450.
Row 1 of A254051.
Row sums of A171370.
Cf. A066272 for anti-divisors.
Cf. A253888 and A254049 (permutations of this sequence without the initial zero).
Cf. A254103 and A254104 (pair of permutations based on this sequence and its complement).

Programs

  • Haskell
    a032766 n = div n 2 + n  -- Reinhard Zumkeller, Dec 13 2014
    (MIT/GNU Scheme) (define (A032766 n) (+ n (floor->exact (/ n 2)))) ;; Antti Karttunen, Jan 24 2015
    
  • Magma
    &cat[ [n, n+1]: n in [0..100 by 3] ]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008
    seq(floor(n/2)+n, n=0..69); # Gary Detlefs, Mar 19 2010
    select(n->member(n mod 3,{0,1}), [$0..103]); # Peter Luschny, Apr 06 2014
  • Mathematica
    a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    Select[Range[0, 200], MemberQ[{0, 1}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    Flatten[{#,#+1}&/@(3Range[0,40])] (* or *) LinearRecurrence[{1,1,-1}, {0,1,3}, 100] (* or *) With[{nn=110}, Complement[Range[0,nn], Range[2,nn,3]]] (* Harvey P. Dale, Mar 10 2013 *)
    CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Floor[3 Range[0, 69]/2] (* L. Edson Jeffery, Jan 14 2017 *)
    Drop[Range[0,110],{3,-1,3}] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    {a(n) = n + n\2}
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    
  • SageMath
    [int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024

Formula

G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(-n) = -A007494(n).
a(n) = A049615(n, 2), for n > 2.
From Paul Barry, Sep 04 2003: (Start)
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 3*floor(n/2) + (n mod 2) = A007494(n) - A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = 2 * A004526(n) + A004526(n+1). - Philippe Deléham, Aug 07 2006
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Row sums of triangle A133083. - Gary W. Adamson, Sep 08 2007
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
A004396(a(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor(n/2) + n. - Gary Detlefs, Mar 19 2010
a(n) = 3n - a(n-1) - 2, for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = n + (n-1) - (n-2) + (n-3) - ... 1 = A052928(n) + A008619(n-1). - Jaroslav Krizek, Mar 22 2011
a(n) = a(n-1) + a(n-2) - a(n-3). - Robert G. Wilson v, Mar 28 2011
a(n) = Sum_{k>=0} A030308(n,k) * A003945(k). - Philippe Deléham, Oct 17 2011
a(n) = 2n - ceiling(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = A000217(n) - 2 * A002620(n-1). - Kival Ngaokrajang, Oct 26 2013
a(n) = Sum_{i=1..n} gcd(i, 2). - Wesley Ivan Hurt, Jan 23 2014
a(n) = 2n + floor((-n - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
A092942(a(n)) = n for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = floor(3*n/2). - L. Edson Jeffery, Jan 18 2015
a(n) = A254049(A249745(n)) = (1+A007310(n)) / 2 for n >= 1. - Antti Karttunen, Jan 24 2015
E.g.f.: (3*x*exp(x) - sinh(x))/2. - Ilya Gutkovskiy, Jul 18 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021

Extensions

Better description from N. J. A. Sloane, Aug 01 1998

A000726 Number of partitions of n in which no parts are multiples of 3.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70, 89, 108, 135, 163, 202, 243, 297, 355, 431, 513, 617, 731, 874, 1031, 1225, 1439, 1701, 1991, 2341, 2731, 3197, 3717, 4333, 5022, 5834, 6741, 7803, 8991, 10375, 11923, 13716, 15723, 18038, 20628, 23603
Offset: 0

Views

Author

Keywords

Comments

Case k=4, i=3 of Gordon Theorem.
Expansion of q^(-1/12)*eta(q^3)/eta(q) in powers of q. - Michael Somos, Apr 20 2004
Euler transform of period 3 sequence [1,1,0,...]. - Michael Somos, Apr 20 2004
Also the number of partitions with at most 2 parts of size 1 and all differences between parts at distance 3 are greater than 1. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,2] (for example, [2,2,1,1] does not qualify because the difference between the first and the fourth parts is equal to 1). - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n where no part appears more than twice. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,1,1]. - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n with least part either 1 or 2 and with differences of consecutive parts at most 2. Example: a(6)=7 because we have [4,2], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1]. - Emeric Deutsch, Apr 18 2006
Equals left border of triangle A174714. - Gary W. Adamson, Mar 27 2010
Triangle A113685 is equivalent to p(x) = p(x^2) * A000009(x); given A000041(x) = p(x). Triangle A176202 is equivalent to p(x) = p(x^3) * A000726(x). - Gary W. Adamson, Apr 11 2010
Convolution of A035382 and A035386. - Vaclav Kotesovec, Aug 23 2015
The number of partitions of n in which no parts are multiples of k equals the number of partitions of n where no part appears more than k-1 times. - Gregory L. Simay, Oct 15 2022

Examples

			There are a(6)=7 partitions of 6 into parts != 0 (mod 3):
[ 1]  [5,1],
[ 2]  [4,2],
[ 3]  [4,1,1],
[ 4]  [2,2,2],
[ 5]  [2,2,1,1],
[ 6]  [2,1,1,1,1], and
[ 7]  [1,1,1,1,1,1]
.
From _Joerg Arndt_, Dec 29 2012: (Start)
There are a(10)=22 partitions p(1)+p(2)+...+p(m)=10 such that p(k)!=p(k-2) (that is, no part appears more than twice):
[ 1]  [ 3 3 2 1 1 ]
[ 2]  [ 3 3 2 2 ]
[ 3]  [ 4 2 2 1 1 ]
[ 4]  [ 4 3 2 1 ]
[ 5]  [ 4 3 3 ]
[ 6]  [ 4 4 1 1 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 2 2 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 3 2 ]
[11]  [ 5 4 1 ]
[12]  [ 5 5 ]
[13]  [ 6 2 1 1 ]
[14]  [ 6 2 2 ]
[15]  [ 6 3 1 ]
[16]  [ 6 4 ]
[17]  [ 7 2 1 ]
[18]  [ 7 3 ]
[19]  [ 8 1 1 ]
[20]  [ 8 2 ]
[21]  [ 9 1 ]
[22]  [ 10 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000009 (no multiples of 2), A001935 (no of 4), A035959 (no of 5), A219601 (no of 6), A035985, A001651, A003105, A035361, A035360.
Cf. A174714. - Gary W. Adamson, Mar 27 2010
Cf. A113685, A176202. - Gary W. Adamson, Apr 11 2010
Cf. A046913.
Column k=3 of A286653.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a000726 n = p a001651_list n where
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 23 2011
  • Maple
    g:=product(1+x^j+x^(2*j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 3)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^n]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Nov 10 2006 *)
    QP = QPochhammer; CoefficientList[QP[q^3]/QP[q] + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 3], 0, 2] ], {n, 0, 50}] (* Robert Price, Jul 28 2020 *)
    Table[Count[IntegerPartitions[n],?(NoneTrue[Mod[#,3]==0&])],{n,0,50}] (* _Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(eta(x^3+x*O(x^n))/eta(x+x*O(x^n)),n))
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q))} \\ Altug Alkan, Mar 20 2018
    

Formula

G.f.: 1/(Product_{k>=1} (1-x^(3*k-1))*(1-x^(3*k-2))) = Product_{k>=1} (1 + x^k + x^(2*k)) (where 1 + x + x^2 is the 3rd cyclotomic polynomial).
a(n) = A061197(n, n).
Given g.f. A(x) then B(x) = x*A(x^6)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u,v,w) = +v^2 +v*w^2 -v*u^2 +3*u^2*w^2. - Michael Somos, May 28 2006
G.f.: P(x^3)/P(x) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011
a(n) ~ 2*Pi * BesselI(1, sqrt((12*n + 1)/3)*Pi/3) / (3*sqrt(12*n + 1)) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)) * (1 + (Pi/36 - 9/(16*Pi))/sqrt(n) + (Pi^2/2592 - 135/(512*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 13 2017
a(n) = (1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^(3*k)))). - Ilya Gutkovskiy, Aug 15 2018

Extensions

More terms from Olivier Gérard

A132463 Number of partitions of n into distinct parts congruent to 0 or 1 modulo 3.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 3, 2, 2, 5, 4, 3, 7, 7, 5, 10, 11, 8, 14, 17, 13, 20, 25, 19, 27, 36, 29, 37, 50, 43, 51, 69, 61, 69, 94, 86, 93, 126, 120, 125, 167, 164, 167, 220, 222, 222, 287, 297, 294, 373, 393, 386, 481, 516, 505, 617, 672, 657, 788, 868, 850, 1002, 1114, 1094
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 22 2007

Keywords

Examples

			a(7)=3 because we have 7, 61 and 43.
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^(3*k))*(1+x^(3*k-2)),k=1..30): gser:=series(g,x=0,100): seq(coeff(gser,x,n),n=0..65); # Emeric Deutsch, Aug 26 2007
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[((1+x^(3*k))*(1+x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2015 *)

Formula

G.f.: Product(k>=1, (1+x^(3*k))*(1+x^(3*k-2)) ). - Emeric Deutsch, Aug 26 2007
a(n) ~ exp(Pi*sqrt(2*n)/3) / (2^(19/12) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Aug 24 2015

Extensions

Prepended a(0) = 1, Joerg Arndt, Feb 22 2015

A035361 Number of partitions of n into parts 3k or 3k+2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 2, 5, 5, 6, 9, 11, 11, 18, 19, 23, 31, 36, 40, 56, 60, 73, 92, 105, 121, 155, 170, 204, 247, 280, 325, 397, 440, 521, 615, 695, 805, 954, 1063, 1244, 1442, 1626, 1873, 2176, 2431, 2813, 3221, 3623, 4146, 4751, 5309, 6086, 6905, 7746, 8807
Offset: 0

Views

Author

Keywords

Comments

Euler transform of period 3 sequence [ 0, 1, 1, ...]. - Kevin T. Acres, Apr 28 2018

Examples

			1 + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 5*x^9 + 6*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(3*k))*(1 - x^(3*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 23 2015 *)
    nmax = 55; kmax = nmax/3;
    s = Flatten[{Range[0, kmax]*3}~Join~{Range[0, kmax]*3 + 2}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)

Formula

a(n) ~ Gamma(2/3) * exp(2*Pi*sqrt(n)/3) / (4 * sqrt(3) * n^(13/12) * Pi^(1/3)). - Vaclav Kotesovec, Aug 23 2015

A374058 Expansion of Product_{k>=1} (1 - x^(3*k-2)) * (1 - x^(3*k)).

Original entry on oeis.org

1, -1, 0, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, -1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, -1, 0, 0, -1, 2, 0, -1, 1, 0, -1, 2, -2, 0, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -2, 1, 0, -2, 2, 0, -2, 2, -1, 0, 2, -1, -1, 1, -1, -1, 3, -2, 0, 2, -2, 1, 2, -3, 1, 1, -2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 2)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082051(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035360(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035386(n-k).
Showing 1-5 of 5 results.